Evolutionary and ecological functional genomics, from lab to the wild

被引:31
|
作者
Zaidem, Maricris L. [1 ]
Groen, Simon C. [1 ]
Purugganan, Michael D. [1 ,2 ]
机构
[1] NYU, Dept Biol, Ctr Genom & Syst Biol, 12 Waverly Pl, New York, NY 10003 USA
[2] New York Univ Abu Dhabi, NYU Abu Dhabi Res Inst, Ctr Genom & Syst Biol, Abu Dhabi, U Arab Emirates
来源
PLANT JOURNAL | 2019年 / 97卷 / 01期
基金
美国国家科学基金会;
关键词
quantitative trait loci mapping; genome-wide association study mapping; ecological transcriptome; lab-field gap; environment; NATURAL GENETIC-VARIATION; QUANTITATIVE TRAIT LOCI; REGULATORY DNA ELEMENTS; ARABIDOPSIS-THALIANA; WIDE ASSOCIATION; FLOWERING-TIME; NEXT-GENERATION; AGRONOMIC TRAITS; OPEN CHROMATIN; SMALL RNAS;
D O I
10.1111/tpj.14167
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expression. Over the last few years, numerous approaches in functional genomics and systems biology have led to a greater understanding of plant phenotypic variation and plant responses to the environment. These approaches, and the questions that they can address, have been loosely termed evolutionary and ecological functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In particular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater knowledge of how plants function in their natural contexts.
引用
收藏
页码:40 / 55
页数:16
相关论文
共 50 条
  • [31] The Sphagnum Genome Project: A New Model for Ecological and Evolutionary Genomics
    Shaw, A. J.
    Schmutz, J.
    Devos, N.
    Shu, S.
    Carrell, A. A.
    Weston, D. J.
    GENOMES AND EVOLUTION OF CHAROPHYTES, BRYOPHYTES, LYCOPHYTES AND FERNS, 2016, 78 : 167 - 187
  • [32] Preface to the special issue: ecological and evolutionary genomics of populations in nature
    Lee, CE
    Mitchell-Olds, T
    MOLECULAR ECOLOGY, 2006, 15 (05) : 1193 - 1196
  • [33] The next generation of microarray research: Applications in evolutionary and ecological genomics
    Shiu, S-H
    Borevitz, J. O.
    HEREDITY, 2008, 100 (02) : 141 - 149
  • [34] EvoPipes.net: Bioinformatic Tools for Ecological and Evolutionary Genomics
    Barker, Michael S.
    Dlugosch, Katrina M.
    Dinh, Louie
    Challa, R. Sashikiran
    Kane, Nolan C.
    King, Matthew G.
    Rieseberg, Loren H.
    EVOLUTIONARY BIOINFORMATICS, 2010, 6 : 143 - 149
  • [35] The next generation of microarray research: applications in evolutionary and ecological genomics
    S-H Shiu
    J O Borevitz
    Heredity, 2008, 100 : 141 - 149
  • [36] What is needed for next-generation ecological and evolutionary genomics?
    Pavey, Scott A.
    Bernatchez, Louis
    Aubin-Horth, Nadia
    Landry, Christian R.
    TRENDS IN ECOLOGY & EVOLUTION, 2012, 27 (12) : 673 - 678
  • [37] Beyond the evolutionary theory of ageing, from functional genomics to evo-gero
    Partridge, Linda
    Gems, David
    TRENDS IN ECOLOGY & EVOLUTION, 2006, 21 (06) : 334 - 340
  • [38] Functional genomics in the wild: a case study with paper wasps shows challenges and prospects for RNA interference in ecological systems
    Weiner, S. A.
    Geffre, A. G.
    Toth, A. L.
    GENOME, 2018, 61 (04) : 266 - 272
  • [39] An Overview of Deep Generative Models in Functional and Evolutionary Genomics
    Yelmen, Burak
    Jay, Flora
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2023, 6 : 173 - 189
  • [40] Viruses of archaea: Structural, functional, environmental and evolutionary genomics
    Krupovic, Mart
    Cvirkaite-Krupovic, Virginija
    Iranzo, Jaime
    Prangishvili, David
    Koonin, Eugene V.
    VIRUS RESEARCH, 2018, 244 : 181 - 193