Ion storage dosimetry

被引:9
|
作者
Mathur, VK [1 ]
机构
[1] USN, Ctr Surface Warfare, Carderock Div, Radiat Technol Off, Bethesda, MD 20817 USA
关键词
Data storage equipment - Ionization chambers - MOSFET devices - Optimization - Radiation;
D O I
10.1016/S0168-583X(01)00714-5
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters. a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber. the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device. underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided. Published by Elsevier Science B.V.
引用
收藏
页码:190 / 206
页数:17
相关论文
共 50 条
  • [31] DIAGNOSTIC-TEST FOR ION-IMPLANTATION DOSIMETRY
    MATTESON, S
    TONN, DG
    NICOLET, MA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1979, 16 (03): : 882 - 883
  • [32] NEW DOSIMETRY SYSTEM FOR A SERIAL PROCESS ION IMPLANTER
    LUNDQUIST, P
    MCKENNA, C
    BRICK, R
    COREY, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1987, 21 (2-4): : 414 - 420
  • [33] A new highly sensitive phosphor for carbon ion dosimetry
    Kore, Bhushan P.
    Dhoble, N. S.
    Lochab, S. P.
    Dhoble, S. J.
    RSC ADVANCES, 2014, 4 (91) : 49979 - 49986
  • [34] Investigations on graphene oxide for ion beam dosimetry applications
    Torrisi, L.
    Silipigni, L.
    Manno, D.
    Serra, A.
    Nassisi, V
    Cutroneo, M.
    Torrisi, A.
    VACUUM, 2020, 178
  • [35] Synthetic diamonds for heavy-ion therapy dosimetry
    Rebisz, M.
    Martemiyanov, A.
    Berdermann, E.
    Pomorski, M.
    Marczewska, B.
    Voss, B.
    DIAMOND AND RELATED MATERIALS, 2006, 15 (4-8) : 822 - 826
  • [36] COMPARISON OF ION-CHAMBER AND TLD DOSIMETRY IN MAMMOGRAPHY
    STANTON, L
    DAY, JL
    BRATTELLI, SD
    LIGHTFOOT, DA
    VINCE, MA
    STANTON, RE
    MEDICAL PHYSICS, 1981, 8 (06) : 792 - 798
  • [37] A PARTICLE IDENTIFICATION SPECTROMETER FOR HEAVY-ION DOSIMETRY
    SCHIMMERLING, W
    CURTIS, SB
    GABOR, G
    KAPLAN, S
    KAST, JW
    PEREZMENDEZ, V
    SADOFF, A
    SUBRAMANIAN, TS
    TOBIAS, CA
    RADIATION RESEARCH, 1980, 83 (02) : 493 - 493
  • [38] Calculation of stopping power ratios for carbon ion dosimetry
    Geithner, O
    Andreo, P
    Sobolevsky, N
    Hartmann, G
    Jäkel, O
    PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (09): : 2279 - 2292
  • [39] LATEST ADVANCES IN ION IMPLANT OPTICAL DOSIMETRY.
    Golin, Jeffrey R.
    Schell, Neil W.
    Glaze, James A.
    Ozarski, Robert G.
    Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1986, B21 (2-4) : 542 - 549
  • [40] Characterization of Small Volume Ion Chambers for Absolute Dosimetry
    Calvo, O.
    Stathakis, S.
    Gutierrez, A.
    Mavroidis, P.
    Moral, S.
    Esquivel, C.
    Shi, C.
    Papanikolaou, N.
    MEDICAL PHYSICS, 2009, 36 (06)