STRONGLY CONVEX FUNCTIONS, MOREAU ENVELOPES, AND THE GENERIC NATURE OF CONVEX FUNCTIONS WITH STRONG MINIMIZERS

被引:20
|
作者
Planiden, C. [1 ]
Wang, X. [1 ]
机构
[1] Univ British Columbia Okanagan, Math, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Attouch-Wets metric; Baire category; complete metric space; convex function; epi-convergence; epi-topology; generic set; meager set; Moreau envelope; proximal mapping; strong minimizer; strongly convex; EPI-DISTANCE TOPOLOGY; OPTIMIZATION PROBLEMS; MONOTONE-OPERATORS; SPACES;
D O I
10.1137/15M1035550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, using Moreau envelopes, we define a complete metric for the set of proper lower semicontinuous convex functions in a finite-dimensional space. Under this metric, the convergence of each sequence of convex functions is epi-convergence. We show that the set of strongly convex functions is dense but it is only of the first category. On the other hand, it is shown that the set of convex functions with strong minima is of the second category.
引用
收藏
页码:1341 / 1364
页数:24
相关论文
共 50 条
  • [21] Convex envelopes for ray-concave functions
    Javiera Barrera
    Eduardo Moreno
    Gonzalo Muñoz
    Optimization Letters, 2022, 16 : 2221 - 2240
  • [22] On generic locally convex vector functions
    Gershkovich, V
    Craven, BD
    Ralph, D
    PROGRESS IN OPTIMIZATION: CONTRIBUTIONS FROM AUSTRALASIA, 2000, 39 : 135 - 152
  • [23] On convex envelopes for bivariate functions over polytopes
    Marco Locatelli
    Fabio Schoen
    Mathematical Programming, 2014, 144 : 65 - 91
  • [24] Convex envelopes for edge-concave functions
    Clifford A. Meyer
    Christodoulos A. Floudas
    Mathematical Programming, 2005, 103 : 207 - 224
  • [25] Convex envelopes for ray-concave functions
    Barrera, Javiera
    Moreno, Eduardo
    Munoz, Gonzalo
    OPTIMIZATION LETTERS, 2022, 16 (08) : 2221 - 2240
  • [26] ON STRONGLY h-CONVEX FUNCTIONS
    Angulo, Hiliana
    Gimenez, Jose
    Moros, Ana Milena
    Nikodem, Kazimierz
    ANNALS OF FUNCTIONAL ANALYSIS, 2011, 2 (02): : 85 - 91
  • [27] Majorization theorems for strongly convex functions
    Syed Zaheer Ullah
    Muhammad Adil Khan
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2019
  • [28] INVARIANCE OF THE COEFFICIENTS OF STRONGLY CONVEX FUNCTIONS
    Thomas, D. K.
    Verma, Sarika
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 95 (03) : 436 - 445
  • [29] Majorization theorems for strongly convex functions
    Ullah, Syed Zaheer
    Khan, Muhammad Adil
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [30] A note on strongly convex and quasiconvex functions
    Jovanovic, MV
    MATHEMATICAL NOTES, 1996, 60 (5-6) : 584 - 585