Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl

被引:14
|
作者
Fang, Daoyuan [1 ]
Le, Wenjun [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric Boussinesq system; Regularity; Existence; Uniqueness; Decay estimates; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; REGULARITY CRITERION; PARTIAL VISCOSITY; WEAK SOLUTIONS; SYSTEM; DISSIPATION; DECAY;
D O I
10.1016/j.na.2017.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the 3D axisymmetric Boussinesq system with nonzero swirl, we obtain the global existence and uniqueness of the strong solutions (u, rho), when parallel to r(d)u(0)(theta) parallel to(L) (3/1-d) d is an element of [0, 1], is sufficiently small. Furthermore, if u(0) is an element of L-3/2 (R-3) and ru(0)(theta) is an element of L-1(R-3) boolean AND L-2(R-3), we have the decay estimate parallel to u(t)parallel to(L2(R3)) + < t >(2) rho parallel to(t)parallel to(2)(L2(R3)) + < t >(2) parallel to u(theta)(t)parallel to(2)(L2(R3)) <= C < t >(-1/2), for any t > 0. At last, we get several continuation criteria. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 86
页数:39
相关论文
共 50 条
  • [41] Regularity Criteria of Axisymmetric Weak Solutions to the 3D Magnetohydrodynamic Equations
    Yuan, Bao-quan
    Li, Feng-ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (02): : 289 - 302
  • [42] Viscous approximation and weak solutions of the 3D axisymmetric Euler equations
    Jiu, Quansen
    Wu, Jiahong
    Yang, Wanrong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (03) : 548 - 558
  • [43] GLOBAL SMOOTH SOLUTION FOR THE MODIFIED ANISOTROPIC 3D BOUSSINESQ EQUATIONS WITH DAMPING
    Lin, Lin
    Liu, Hui
    Sun, Cheng-Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 2171 - 2195
  • [44] Global well-posedness for the 3D Newton-Boussinesq equations
    Wu, Lili
    ARMENIAN JOURNAL OF MATHEMATICS, 2016, 8 (01): : 58 - 67
  • [45] Blow-up criteria of smooth solutions to the 3D Boussinesq equations
    Qin, Yuming
    Yang, Xinguang
    Wang, Yu-Zhu
    Liu, Xin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (03) : 278 - 285
  • [46] Blow-Up Criterion of Weak Solutions for the 3D Boussinesq Equations
    Dai, Zhaohui
    Wang, Xiaosong
    Zhang, Lingrui
    Hou, Wei
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [47] A LOGARITHMICALLY IMPROVED REGULARITY CRITERION OF SMOOTH SOLUTIONS FOR THE 3D BOUSSINESQ EQUATIONS
    Ye, Zhuan
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (02) : 417 - 423
  • [48] Global Solutions for 3D Quadratic Schrodinger Equations
    Germain, Pierre
    Masmoudi, Nader
    Shatah, Jalal
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (03) : 414 - 432
  • [49] A REGULARITY CRITERION TO THE 3D BOUSSINESQ EQUATIONS
    Alghamdi, A. M.
    Ben Omrane, I
    Gala, S.
    Ragusa, M. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1795 - 1804
  • [50] A regularity criterion for the 3D Boussinesq equations
    Wu, Fan
    APPLICABLE ANALYSIS, 2022, 101 (08) : 3039 - 3047