Development of closed-loop control of robotic welding processes

被引:27
|
作者
Steele, JPH [1 ]
Mnich, C [1 ]
Debrunner, C [1 ]
Vincent, T [1 ]
Liu, S [1 ]
机构
[1] Colorado Sch Mines, Ctr Welding Joining & Coatings Res, Golden, CO 80401 USA
关键词
welding; robotics; control systems;
D O I
10.1108/01439910510600236
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose - The purpose of this research is to develop closed-loop control of robotic welding processes. Design/methodology/approach - The approach being developed is the creation of three-dimensional models of the weld pool using stereo imagining. These models will be used in a model-based feedback control system. Fusion of more than one sensor type in the controller is used. Findings - Three-dimensional images can be produced from stereo images of GMAW-p weld pools. This requires coordinating the image capture with the arc pulse to allow observation of the pool. Research limitations/implications - This is a work in progress. The imaging is not being done in real time at this point in time. Future work will address this issue. Also, how the image information is to be used to make corrections within the controller is future work. Practical implications - Closing the loop on GMAW welding will allow robotic automation of welding to proceed to a much broader degree of application. Originality/value - This paper demonstrates that stereo imaging of out-of-position GMAW-p weld pools is possible and the useful information can be obtained from these images. It also provides insights into the analysis required within the model-based controller if one is to close the loop on the process specifically with regard to weld pool stability.
引用
收藏
页码:350 / 355
页数:6
相关论文
共 50 条
  • [41] Modular Closed-Loop Control of Diabetes
    Patek, S. D.
    Magni, L.
    Dassau, E.
    Hughes-Karvetski, C.
    Toffanin, C.
    De Nicolao, G.
    Del Favero, Simone
    Breton, M.
    Dalla Man, C.
    Renard, E.
    Zisser, H.
    Doyle, F. J., III
    Cobelli, C.
    Kovatchev, B. P.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (11) : 2986 - 2999
  • [42] Closed-loop control of depth of anaesthesia
    Webb, A
    Allen, R
    Smith, D
    MEASUREMENT & CONTROL, 1996, 29 (07): : 211 - 215
  • [43] Waterflooding using closed-loop control
    Geir Nævdal
    D. Roald Brouwer
    Jan-Dirk Jansen
    Computational Geosciences, 2006, 10 : 37 - 60
  • [44] Closed-loop control of magnetotactic bacteria
    Khalil, Islam S. M.
    Pichel, Marc P.
    Abelmann, Leon
    Misra, Sarthak
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (06): : 637 - 649
  • [45] CLOSED-LOOP CONTROL OF URBAN TRAFFIC
    RHEE, SY
    YARDENI, A
    MCAULIFFE, R
    OPERATIONS RESEARCH, 1961, 9 : B135 - B135
  • [46] Closed-loop control of artificial respiration
    Tehrani, FT
    Roum, JH
    WESCON - 96, CONFERENCE PROCEEDINGS, 1996, : 253 - 258
  • [47] A MICROCONTROLLER FOR CLOSED-LOOP MOTION CONTROL
    DALAY, BS
    PARKIN, RM
    MICROPROCESSORS AND MICROSYSTEMS, 1991, 15 (09) : 473 - 480
  • [48] Closed-loop control of propofol anaesthesia
    Kenny, GNC
    Mantzaridis, H
    BRITISH JOURNAL OF ANAESTHESIA, 1999, 83 (02) : 223 - 228
  • [49] Multitasked closed-loop control in anesthesia
    Gentilini, A
    Frei, CW
    Glattfedler, AH
    Morari, M
    Sieber, TJ
    Wymann, R
    Schnider, TW
    Zbinden, AM
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (01): : 39 - 53
  • [50] Closed-loop control of analgesia in humans
    Gentilini, A
    Morari, M
    Bieniok, C
    Wymann, R
    Schnider, TW
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 861 - 866