Acid-Sensing Ion Channels in Glial Cells

被引:12
|
作者
Cegielski, Victoria [1 ]
Chakrabarty, Rohan [1 ]
Ding, Shinghua [2 ,3 ]
Wacker, Michael J. [1 ]
Monaghan-Nichols, Paula [1 ]
Chu, Xiang-Ping [1 ]
机构
[1] Univ Missouri, Sch Med, Dept Biomed Sci, Kansas City, MO 64108 USA
[2] Univ Missouri, Dept Biomed Biol & Chem Engn, Columbia, MO 65211 USA
[3] Univ Missouri, Dalton Cardiovasc Res Ctr, Columbia, MO 65211 USA
关键词
acid-sensing ion channels; glial cells; astrocyte; microglia; oligodendrocyte; expression; function; SYNAPTIC PLASTICITY; MULTIPLE-SCLEROSIS; ASTROCYTES; MICROGLIA; INFLAMMATION; ABLATION; PHARMACOLOGY; ASIC2; OLIGODENDROCYTES; NEUROPROTECTION;
D O I
10.3390/membranes12020119
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acid-sensing ion channels (ASICs) are proton-gated cation channels and key mediators of responses to neuronal injury. ASICs exhibit unique patterns of distribution in the brain, with high expression in neurons and low expression in glial cells. While there has been a lot of focus on ASIC in neurons, less is known about the roles of ASICs in glial cells. ASIC1a is expressed in astrocytes and might contribute to synaptic transmission and long-term potentiation. In oligodendrocytes, constitutive activation of ASIC1a participates in demyelinating diseases. ASIC1a, ASIC2a, and ASIC3, found in microglial cells, could mediate the inflammatory response. Under pathological conditions, ASIC dysregulation in glial cells can contribute to disease states. For example, activation of astrocytic ASIC1a may worsen neurodegeneration and glioma staging, activation of microglial ASIC1a and ASIC2a may perpetuate ischemia and inflammation, while oligodendrocytic ASIC1a might be involved in multiple sclerosis. This review concentrates on the unique ASIC components in each of the glial cells and integrates these glial-specific ASICs with their physiological and pathological conditions. Such knowledge provides promising evidence for targeting of ASICs in individual glial cells as a therapeutic strategy for a diverse range of conditions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Acid-Sensing Ion Channels in Postoperative Pain
    Deval, Emmanuel
    Noel, Jacques
    Gasull, Xavier
    Delaunay, Anne
    Alloui, Abdelkrim
    Friend, Valerie
    Eschalier, Alain
    Lazdunski, Michel
    Lingueglia, Eric
    JOURNAL OF NEUROSCIENCE, 2011, 31 (16): : 6059 - 6066
  • [22] Acid-Sensing Ion Channels Contribute to Neurotoxicity
    Xiang-Ping Chu
    Kenneth A. Grasing
    John Q. Wang
    Translational Stroke Research, 2014, 5 : 69 - 78
  • [23] Acid-sensing ion channels in sensory signaling
    Caraftino, Marcelo D.
    Montalbetti, Nicolas
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2020, 318 (03) : F531 - F543
  • [24] Peptides inhibitors of acid-sensing ion channels
    Diochot, S.
    Salinas, M.
    Baron, A.
    Escoubas, P.
    Lazdunski, M.
    TOXICON, 2007, 49 (02) : 271 - 284
  • [25] Gating mechanisms of acid-sensing ion channels
    Nate Yoder
    Craig Yoshioka
    Eric Gouaux
    Nature, 2018, 555 : 397 - 401
  • [26] Acid-sensing ion channels in pain and disease
    John A. Wemmie
    Rebecca J. Taugher
    Collin J. Kreple
    Nature Reviews Neuroscience, 2013, 14 : 461 - 471
  • [27] Modulation of Neurotransmission by Acid-Sensing Ion Channels
    Wu, Pu-Yeh
    Lien, Cheng-Chang
    JOURNAL OF PHYSIOLOGICAL INVESTIGATION, 2024, 67 (05): : 242 - 248
  • [28] Acid-sensing ion channels: trafficking and pathophysiology
    Zeng, Wei-Zheng
    Liu, Di-Shi
    Xu, Tian-Le
    CHANNELS, 2014, 8 (06) : 481 - 487
  • [29] Structure and activity of the acid-sensing ion channels
    Sherwood, Thomas W.
    Frey, Erin N.
    Askwith, Candice C.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2012, 303 (07): : C699 - C710
  • [30] Acid-sensing ion channels in pain and disease
    Wemmie, John A.
    Taugher, Rebecca J.
    Kreple, Collin J.
    NATURE REVIEWS NEUROSCIENCE, 2013, 14 (07) : 461 - 471