The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit

被引:145
|
作者
Murugan, Karthik [1 ]
Babu, Kesavan [2 ]
Sundaresan, Ramya [2 ]
Rajan, Rakhi [2 ]
Sashital, Dipali G. [1 ]
机构
[1] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, 2437 Pammel Dr, Ames, IA 50011 USA
[2] Univ Oklahoma, Stephenson Life Sci Res Ctr, Dept Chem & Biochem, 101 Stephenson Pkwy, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
GENOME-WIDE SPECIFICITIES; RNA-GUIDED ENDONUCLEASE; R-LOOP COMPLEX; STRUCTURAL BASIS; CRYSTAL-STRUCTURE; PAM RECOGNITION; DNA CLEAVAGE; CPF1; NUCLEASES; IMMUNITY;
D O I
10.1016/j.molcel.2017.09.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [31] A use/disuse paradigm for CRISPR-Cas systems
    Sophie Juliane Veigl
    [J]. Biology & Philosophy, 2019, 34
  • [32] Characterization of Ligilactobacillus salivarius CRISPR-Cas systems
    Roberts, Avery
    Spang, Daniel
    Sanozky-Dawes, Rosemary
    Nethery, Matthew A.
    Barrangou, Rodolphe
    [J]. MSPHERE, 2024, 9 (07)
  • [33] CRISPR-Cas systems for diagnosing infectious diseases
    Kostyusheva, Anastasiya
    Brezgin, Sergey
    Babin, Yurii
    Vasilyeva, Irina
    Glebe, Dieter
    Kostyushev, Dmitry
    Chulanov, Vladimir
    [J]. METHODS, 2022, 203 : 431 - 446
  • [34] SnapShot: Class 1 CRISPR-Cas Systems
    Makarova, Kira S.
    Zhang, Feng
    Koonin, Eugene V.
    [J]. CELL, 2017, 168 (05) : 946 - +
  • [35] A use/disuse paradigm for CRISPR-Cas systems
    Veigl, Sophie Juliane
    [J]. BIOLOGY & PHILOSOPHY, 2019, 34 (01)
  • [37] An updated evolutionary classification of CRISPR-Cas systems
    Makarova, Kira S.
    Wolf, Yuri I.
    Alkhnbashi, Omer S.
    Costa, Fabrizio
    Shah, Shiraz A.
    Saunders, Sita J.
    Barrangou, Rodolphe
    Brouns, Stan J. J.
    Charpentier, Emmanuelle
    Haft, Daniel H.
    Horvath, Philippe
    Moineau, Sylvain
    Mojica, Francisco J. M.
    Terns, Rebecca M.
    Terns, Michael P.
    White, Malcolm F.
    Yakunin, Alexander F.
    Garrett, Roger A.
    van der Oost, John
    Backofen, Rolf
    Koonin, Eugene V.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2015, 13 (11) : 722 - 736
  • [38] RNA-targeting CRISPR-Cas systems
    van Beljouw, Sam P. B.
    Sanders, Jasper
    Rodriguez-Molina, Alicia
    Brouns, Stan J. J.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2023, 21 (01) : 21 - 34
  • [39] The Reverse Transcriptases Associated with CRISPR-Cas Systems
    Nicolás Toro
    Francisco Martínez-Abarca
    Alejandro González-Delgado
    [J]. Scientific Reports, 7
  • [40] Editorial: CRISPR-Cas Systems in Bacteria and Archaea
    Kamruzzaman, Muhammad
    Yan, Aixin
    Castro-Escarpulli, Graciela
    [J]. FRONTIERS IN MICROBIOLOGY, 2022, 13