Word problems for finite nilpotent groups

被引:3
|
作者
Camina, Rachel D. [1 ]
Iniguez, Ainhoa [2 ]
Thillaisundaram, Anitha [3 ]
机构
[1] Fitzwilliam Coll, Cambridge CB3 0DG, England
[2] Univ Mondragon, Fac Gastron Sci, Donostia San Sebastian, Spain
[3] Univ Lincoln, Sch Math & Phys, Brayford Pool, Lincoln LN6 7TS, England
关键词
Words; Amit's conjecture; Rational words; 2 GROUP ELEMENTS; PROBABILITY-DISTRIBUTION; COMMUTATOR; EQUATIONS; MAPS; CHARACTERS; NUMBER;
D O I
10.1007/s00013-020-01504-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w be a word in k variables. For a finite nilpotent group G, a conjecture of Amit states that N-w(1) >= vertical bar G vertical bar(k-1), where for g is an element of G, the quantity N-w(g) is the number of k-tuples (g(1), ..., g(k)) is an element of G((k)) such that w(g(1), ..., g(k)) = g. Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit's conjecture, which states that N-w(g) >= vertical bar G vertical bar(k-1) for g a w-value in G, and prove that N-w(g) = vertical bar G vertical bar(k-2) for finite groups G of odd order and nilpotency class 2. If w is a word in two variables, we further show that the generalized Amit conjecture holds for finite groups G of nilpotency class 2. In addition, we use character theory techniques to confirm the generalized Amit conjecture for finite p-groups (p a prime) with two distinct irreducible character degrees and a particular family of words. Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.
引用
收藏
页码:599 / 609
页数:11
相关论文
共 50 条
  • [41] New characterizations of σ-nilpotent finite groups
    Murashka, Viachaslau, I
    Vasil'ev, Alexander F.
    RICERCHE DI MATEMATICA, 2024, 73 (01) : 611 - 618
  • [42] Automorphisms of finite order of Nilpotent groups
    Wehrfritz B.A.F.
    Ricerche di Matematica, 2014, 63 (2) : 261 - 272
  • [43] Lattice characterization of finite nilpotent groups
    Jelena Jovanović
    Branimir Šešelja
    Andreja Tepavčević
    Algebra universalis, 2021, 82
  • [44] ON THE CIRCLE GROUPS OF FINITE NILPOTENT RINGS
    TAHARA, K
    HOSOMI, A
    LECTURE NOTES IN MATHEMATICS, 1984, 1098 : 161 - 179
  • [45] LAWS IN NILPOTENT-BY-FINITE GROUPS
    COSSEY, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (03) : 685 - &
  • [46] Finite groups with nilpotent and Hall subgroups
    Knyagina, V. N.
    Monakhov, V. S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2013, 23 (02): : 175 - 182
  • [47] Counting nilpotent pairs in finite groups
    Fulman, JE
    Galloy, MD
    Sherman, GJ
    Vanderkam, JM
    ARS COMBINATORIA, 2000, 54 : 161 - 178
  • [48] ON FINITE-BY-NILPOTENT PROFINITE GROUPS
    Detomi, Eloisa
    Morigi, Marta
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2020, 9 (04) : 223 - 229
  • [49] On finite p-nilpotent groups
    Adolfo Ballester-Bolinches
    Xiuyun Guo
    Yangming Li
    Ning Su
    Monatshefte für Mathematik, 2016, 181 : 63 - 70