Word problems for finite nilpotent groups

被引:3
|
作者
Camina, Rachel D. [1 ]
Iniguez, Ainhoa [2 ]
Thillaisundaram, Anitha [3 ]
机构
[1] Fitzwilliam Coll, Cambridge CB3 0DG, England
[2] Univ Mondragon, Fac Gastron Sci, Donostia San Sebastian, Spain
[3] Univ Lincoln, Sch Math & Phys, Brayford Pool, Lincoln LN6 7TS, England
关键词
Words; Amit's conjecture; Rational words; 2 GROUP ELEMENTS; PROBABILITY-DISTRIBUTION; COMMUTATOR; EQUATIONS; MAPS; CHARACTERS; NUMBER;
D O I
10.1007/s00013-020-01504-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w be a word in k variables. For a finite nilpotent group G, a conjecture of Amit states that N-w(1) >= vertical bar G vertical bar(k-1), where for g is an element of G, the quantity N-w(g) is the number of k-tuples (g(1), ..., g(k)) is an element of G((k)) such that w(g(1), ..., g(k)) = g. Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit's conjecture, which states that N-w(g) >= vertical bar G vertical bar(k-1) for g a w-value in G, and prove that N-w(g) = vertical bar G vertical bar(k-2) for finite groups G of odd order and nilpotency class 2. If w is a word in two variables, we further show that the generalized Amit conjecture holds for finite groups G of nilpotency class 2. In addition, we use character theory techniques to confirm the generalized Amit conjecture for finite p-groups (p a prime) with two distinct irreducible character degrees and a particular family of words. Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.
引用
收藏
页码:599 / 609
页数:11
相关论文
共 50 条
  • [1] Word problems for finite nilpotent groups
    Rachel D. Camina
    Ainhoa Iñiguez
    Anitha Thillaisundaram
    Archiv der Mathematik, 2020, 115 : 599 - 609
  • [2] Nilpotent injectors in finite groups
    Neuman, A
    ARCHIV DER MATHEMATIK, 1998, 71 (05) : 337 - 340
  • [4] PRODUCTS OF FINITE NILPOTENT GROUPS
    PENNINGTON, EA
    MATHEMATISCHE ZEITSCHRIFT, 1973, 134 (01) : 81 - 83
  • [5] Nilpotent injectors in finite groups
    Anni Neumann
    Archiv der Mathematik, 1998, 71 : 337 - 340
  • [6] ON FINITE PRODUCTS OF NILPOTENT GROUPS
    AMBERG, B
    HOFLING, B
    ARCHIV DER MATHEMATIK, 1994, 63 (01) : 1 - 8
  • [7] Nilpotent -local finite groups
    Cantarero, Jose
    Scherer, Jerome
    Viruel, Antonio
    ARKIV FOR MATEMATIK, 2014, 52 (02): : 203 - 225
  • [8] A Note on Finite Nilpotent Groups
    Werner, Nicholas J.
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (09): : 803 - 805
  • [9] A CHARACTERIZATION OF FINITE NILPOTENT GROUPS
    HOLMES, CV
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (10): : 1113 - &
  • [10] On the σ-nilpotent hypercenter of finite groups
    Murashka, Viachaslau, I
    Vasil'ev, Alexander F.
    JOURNAL OF GROUP THEORY, 2022, 25 (06) : 1083 - 1098