On SOR-like iteration methods for solving weakly nonlinear systems

被引:6
|
作者
Ke, Yifen [1 ,2 ]
Ma, Changfeng [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2022年 / 37卷 / 01期
基金
中国国家自然科学基金;
关键词
Weakly nonlinear equation; matrix splitting; SOR; convergence theory; nonlinear convection-diffusion equation; linear complementarity problem; CONJUGATE-GRADIENT; NEWTON METHOD; CONVERGENCE;
D O I
10.1080/10556788.2020.1755861
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we introduce a class of SOR-like iteration methods for solving the systems of the weakly nonlinear equation, which is by reformulating equivalently the weakly nonlinear equation as a two-by-two block nonlinear equation. Two types of the global convergence theorems are given under suitable choices of the involved splitting matrix and parameter. Numerical results for the three-dimensional nonlinear convection-diffusion equation and the linear complementarity problem show that the proposed iteration methods are feasible and efficient for solving the weakly nonlinear equations.
引用
收藏
页码:320 / 337
页数:18
相关论文
共 50 条
  • [1] Generalized SOR-like iteration method for solving weakly nonlinear systems
    Zhang, Fujie
    Huang, Na
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (08) : 1579 - 1594
  • [2] On the SOR-like iteration method for solving absolute value equations
    Guo, Peng
    Wu, Shi-Liang
    Li, Cui-Xia
    APPLIED MATHEMATICS LETTERS, 2019, 97 : 107 - 113
  • [3] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [4] SOR-like Methods for Augmented Systems
    Gene H. Golub
    X. Wu
    Jin-Yun Yuan
    BIT Numerical Mathematics, 2001, 41 : 71 - 85
  • [5] SOR-like methods for augmented systems
    Golub, GH
    Wu, X
    Yuan, JY
    BIT, 2001, 41 (01): : 71 - 85
  • [6] On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations
    Zhang, Yiming
    Yu, Dongmei
    Yuan, Yifei
    SYMMETRY-BASEL, 2023, 15 (03):
  • [7] New SOR-like methods for solving the Sylvester equation
    Kierzkowski, Jakub
    OPEN MATHEMATICS, 2015, 13 (01): : 178 - 187
  • [8] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Cairong Chen
    Bo Huang
    Dongmei Yu
    Deren Han
    Numerical Algorithms, 2024, 96 : 799 - 826
  • [9] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Chen, Cairong
    Huang, Bo
    Yu, Dongmei
    Han, Deren
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 799 - 826
  • [10] On nonlinear SOR-like methods, I - Applications to simultaneous methods for polynomial zeros
    Yamamoto T.
    Japan Journal of Industrial and Applied Mathematics, 1997, 14 (1) : 87 - 97