Existence of Solution of Space-Time Fractional Diffusion-Wave Equation in Weighted Sobolev Space

被引:0
|
作者
Zhang, Kangqun [1 ]
机构
[1] Nanjing Inst Technol, Dept Math & Phys, Nanjing 211167, Peoples R China
关键词
TRANSFORM;
D O I
10.1155/2020/1545043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider Cauchy problem of space-time fractional diffusion-wave equation. Applying Laplace transform and Fourier transform, we establish the existence of solution in terms of Mittag-Leffler function and prove its uniqueness in weighted Sobolev space by use of Mikhlin multiplier theorem. The estimate of solution also shows the connections between the loss of regularity and the order of fractional derivatives in space or in time.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation
    Tatar, SalIh
    Tinaztepe, Ramazan
    Ulusoy, Suleyman
    APPLICABLE ANALYSIS, 2016, 95 (01) : 1 - 23
  • [32] Solvability Cauchy Problem for Time-Space Fractional Diffusion-Wave Equation with Variable Coefficient
    H. H. Turdiev
    Lobachevskii Journal of Mathematics, 2024, 45 (10) : 5281 - 5294
  • [33] Solutions of the space-time fractional Cattaneo diffusion equation
    Qi, Haitao
    Jiang, Xiaoyun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (11) : 1876 - 1883
  • [34] The space-time fractional diffusion equation with Caputo derivatives
    Huang F.
    Liu F.
    Journal of Applied Mathematics and Computing, 2005, 19 (1-2) : 179 - 190
  • [35] Modeling and simulation of the fractional space-time diffusion equation
    Gomez-Aguilar, J. F.
    Miranda-Hernandez, M.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Baleanu, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 115 - 127
  • [36] The Space-Time Spectral Method for a Fractional Diffusion Equation
    Huang, Yu
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 347 - 350
  • [37] Fourth-order numerical method for the space time tempered fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Deng, Weihua
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 120 - 127
  • [38] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [39] An Efficient Space-Time Method for Time Fractional Diffusion Equation
    Shen, Jie
    Sheng, Chang-Tao
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 1088 - 1110
  • [40] Space-Time Estimates on Damped Fractional Wave Equation
    Chen, Jiecheng
    Fan, Dashan
    Zhang, Chunjie
    ABSTRACT AND APPLIED ANALYSIS, 2014,