Wavelet modeling of functional random effects with application to human vision data

被引:8
|
作者
Ogden, R. Todd [1 ]
Greene, Ernest [2 ]
机构
[1] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[2] Univ So Calif, Dept Psychol, Los Angeles, CA 90089 USA
关键词
Functional data analysis; False discovery rate; MIXED-EFFECTS MODELS; SMOOTHING SPLINE MODELS; COLLINEARITY JUDGMENT; CROSSED SAMPLES; CURVES; SHRINKAGE;
D O I
10.1016/j.jspi.2010.04.044
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In modern statistical practice, it is increasingly common to observe a set of curves or images, often measured with noise, and to use these as the basis of analysis (functional data analysis). We consider a functional data model consisting of measurement error and functional random effects motivated by data from a study of human vision. By transforming the data into the wavelet domain we are able to exploit the expected sparse representation of the underlying function and the mechanism generating the random effects. We propose simple fitting procedures and illustrate the methods on the vision data. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3797 / 3808
页数:12
相关论文
共 50 条
  • [41] Spatiotemporal wavelet resampling for functional neuroimaging data
    Breakspear, M
    Brammer, MJ
    Bullmore, ET
    Das, P
    Williams, LM
    HUMAN BRAIN MAPPING, 2004, 23 (01) : 1 - 25
  • [42] On the estimation of functional random effects
    Durban, Maria
    Carmen Aguilera-Morillo, M.
    STATISTICAL MODELLING, 2017, 17 (1-2) : 50 - 58
  • [43] Fuzzy wavelet Modeling using data clustering
    Sadati, Nasser
    Marami, Bahram
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 114 - 119
  • [44] The Hierarchical Evolution in Human Vision Modeling
    Ballard, Dana H.
    Zhang, Ruohan
    TOPICS IN COGNITIVE SCIENCE, 2021, 13 (02) : 309 - 328
  • [45] Functional ANOVA with random functional effects: an application to event-related potentials modelling for electroencephalograms analysis
    Bugli, Celine
    Lambert, Philippe
    STATISTICS IN MEDICINE, 2006, 25 (21) : 3718 - 3739
  • [46] Modeling multivariate survival data by a semiparametric random effects proportional odds model
    Lam, KF
    Lee, YW
    Leung, TL
    BIOMETRICS, 2002, 58 (02) : 316 - 323
  • [47] lmeEEG: Mass linear mixed-effects modeling of EEG data with crossed random effects
    Visalli, Antonino
    Montefinese, Maria
    Viviani, Giada
    Finos, Livio
    Vallesi, Antonino
    Ambrosini, Ettore
    JOURNAL OF NEUROSCIENCE METHODS, 2024, 401
  • [48] An extended random-effects approach to modeling repeated, overdispersed count data
    Molenberghs, Geert
    Verbeke, Geert
    Demetrio, Clarice G. B.
    LIFETIME DATA ANALYSIS, 2007, 13 (04) : 513 - 531
  • [49] An extended random-effects approach to modeling repeated, overdispersed count data
    Geert Molenberghs
    Geert Verbeke
    Clarice G. B. Demétrio
    Lifetime Data Analysis, 2007, 13 : 513 - 531
  • [50] Modeling the random effects covariance matrix for longitudinal data with covariates measurement error
    Hoque, Md Erfanul
    Torabi, Mahmoud
    STATISTICS IN MEDICINE, 2018, 37 (28) : 4167 - 4184