Carboxylic ester-terminated fulleropyrrolidine as an efficient electron transport material for inverted perovskite solar cells

被引:24
|
作者
Chang, Junwei [1 ,2 ]
Wang, Ying-Chiao [2 ]
Song, Changjian [2 ,3 ]
Zhu, Liping [2 ]
Guo, Qiang [1 ]
Fang, Junfeng [2 ,3 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Dept Polymer Mat, Nanchen Rd 333, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Graphene Technol & Applicat Zhejiang Prov, Ningbo 315201, Zhejiang, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
PERFORMANCE; POLYMER; IODIDE; ENHANCEMENT; LENGTHS; LAYERS;
D O I
10.1039/c8tc01955j
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interfacial contacts between perovskite crystals and metal electrodes play a significant role in efficient charge transfer in perovskite solar cells (PSCs). In this work, C-60 pyrrolidine tris-acid ethyl ester (CPTA-E) has been employed to form a uniform electron transport layer (ETL) covering the perovskite surface in p-i-n-structured PSCs to replace the traditional (6,6)-phenyl-C-61-butyric acid methyl ester (PCBM) ETL. X-ray photoelectron spectroscopy analysis of the perovskite/CPTA-E interface reveals that there are strong coordination interactions between the perovskite and CPTA-E, which are beneficial for the adhesion of the CPTA-E ETL on the perovskite surface. On the other hand, steady-state photoluminescence and time-resolved photoluminescence studies of the perovskite films with different quenching layers confirm that CPTA-E ETL has a preferable charge quenching effect compared to the PCBM ETL, which suggests that the CPTA-E ETL has a superior electron extraction and transport ability. The corresponding CPTA-E ETL-based device exhibits a champion power conversion efficiency (PCE) of 17.44% with less hysteresis. Moreover, the steady-state photocurrent output of the CPTA-E-containing PSC is prolonged compared to that of the PCBM-based device. Therefore, this work provides a viable strategy to design suitable electron transport materials for high-performance PSCs.
引用
收藏
页码:6982 / 6987
页数:6
相关论文
共 50 条
  • [31] Electrodeposition of nanostructured bilayer CuI@CuSCN as hole transport material for highly efficient inverted perovskite solar cells
    Ramachandran, K.
    Jeganathan, C.
    Karuppuchamy, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 881
  • [32] Copper-copper iodide hybrid nanostructure as hole transport material for efficient and stable inverted perovskite solar cells
    Jing Cao
    Binghui Wu
    Jian Peng
    Xiaoxia Feng
    Congping Li
    Yu Tang
    Science China Chemistry, 2019, 62 : 363 - 369
  • [33] Effect of Electron-Transport Material on Light-Induced Degradation of Inverted Planar Junction Perovskite Solar Cells
    Akbulatov, Azat F.
    Frolova, Lyubov A.
    Griffin, Monroe P.
    Gearba, Ioana R.
    Dolocan, Andrei
    Vanden Bout, David A.
    Tsarev, Sergey
    Katz, Eugene A.
    Shestakov, Alexander F.
    Stevenson, Keith J.
    Troshin, Pavel A.
    ADVANCED ENERGY MATERIALS, 2017, 7 (19)
  • [34] Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells
    Yang, Yan
    Chen, Jieda
    Li, Chengyuan
    Zhang, Wei
    Zhang, Shan-Ting
    Li, Dongdong
    Zhang, Jiafan
    Ding, Yi'an
    Lu, Linfeng
    Song, Ye
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (23) : 18522 - 18532
  • [35] Highly efficient inverted hole-transport-layer-free perovskite solar cells
    Zhou, Zhongmin
    Pang, Shuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (02) : 503 - 512
  • [36] Small Molecular Organic Hole Transport Layer for Efficient Inverted Perovskite Solar Cells
    Ahmmed, Shamim
    Karim, Md. Abdul
    He, Yulu
    Cao, Siliang
    Kayesh, Md. Emrul
    Matsuishi, Kiyoto
    Islam, Ashraful
    SOLAR RRL, 2025,
  • [37] Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells
    Yan Yang
    Jieda Chen
    Chengyuan Li
    Wei Zhang
    Shan-Ting Zhang
    Dongdong Li
    Jiafan Zhang
    Yi’an Ding
    Linfeng Lu
    Ye Song
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 18522 - 18532
  • [38] Stability enhancement of inverted perovskite solar cells using LiF in electron transport layer
    Tan, Dawei
    Zhang, Xuejing
    Liu, Xiao
    Zhang, Hongmei
    Ma, Dongge
    ORGANIC ELECTRONICS, 2020, 80
  • [39] Inorganic top electron transport layer for high performance inverted perovskite solar cells
    Yang, Boping
    Peng, Simin
    Choy, Wallace C. H.
    ECOMAT, 2021, 3 (05)
  • [40] Naphthalene diimide based polymer as electron transport layer in inverted perovskite solar cells
    Deng, Changbo
    Wan, Li
    Li, Shuang
    Tao, Lupiao
    Wang, Su-nan
    Zhang, Wenjun
    Fang, Junfeng
    Fu, Zhengping
    Song, Weijie
    ORGANIC ELECTRONICS, 2020, 87 (87)