Inhibitory and synergistic effects on thermal behaviour and char characteristics during the co-pyrolysis of biomass and single-use plastics

被引:30
|
作者
Vanapalli, Kumar Raja [1 ]
Bhattacharya, Jayanta [1 ,2 ]
Samal, Biswajit [1 ]
Chandra, Subhash [1 ,4 ]
Medha, Isha [2 ]
Dubey, Brajesh K. [1 ,3 ]
机构
[1] Indian Inst Technol, Sch Environm Sci & Engn, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Min Engn, Kharagpur 721302, W Bengal, India
[3] Indian Inst Technol, Dept Civil Engn, Kharagpur 721302, W Bengal, India
[4] Vignans Inst Informat Technol, Dept Civil Engn, Visakhapatnam 530049, Andhra Pradesh, India
关键词
Co-pyrolysis; Biomass; Single-use plastics; Kinetics; Thermogravimetric analysis; Synergy; THERMOGRAVIMETRIC ANALYSIS; WASTE PLASTICS; POLYETHYLENE; KINETICS; DEGRADATION; MIXTURES; BLENDS; SHELL; FUEL; PARAMETERS;
D O I
10.1016/j.energy.2021.121369
中图分类号
O414.1 [热力学];
学科分类号
摘要
The co-pyrolytic behaviour of single-use plastics (Polystyrene, Low-density polyethylene) and Eucalyptus biomass was investigated at variable temperatures (300, 400, 500, and 600 degrees C) and the effects of their interactions on the characteristics of solid chars were also studied. The variation in thermal profiles of 'Delta Mass loss%' showed the inhibitory and synergistic effects of plastics on the biomass degradation, resulting in higher and lower yields of char composite, respectively. The blend containing polystyrene exhibited the highest synergistic (Delta M = 15.1) and inhibitory (Delta M = -4) effects. The thermal kinetics of blends also indicated the presence of both the effects through relatively higher and lower apparent activation energies compared to the calculated, before and during the degradation of plastics. Despite low fixed carbon contents and high volatile matter, polymer-coated char composites had higher fuel value indices (36-136%), energy yields (1-26%) and calorific values (15-21%), relative to biochar. After the complete degradation of plastics, char composites exhibited higher values of electrical conductivity (2-40%), surface area (15-64%), and cation exchange capacity (5-19%). These properties advocate the flexibility of char composites' applicability as solid fuel or soil amender depending on the optimized conditions of co-pyrolysis. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Synergistic effects during co-pyrolysis and liquefaction of biomass and lignite under syngas
    Zhenxing Guo
    Zongqing Bai
    Jin Bai
    Zhiqing Wang
    Wen Li
    Journal of Thermal Analysis and Calorimetry, 2015, 119 : 2133 - 2140
  • [22] Synergistic effects during co-pyrolysis and liquefaction of biomass and lignite under syngas
    Guo, Zhenxing
    Bai, Zongqing
    Bai, Jin
    Wang, Zhiqing
    Li, Wen
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 119 (03) : 2133 - 2140
  • [23] Impact of plastic type on synergistic effects during co-pyrolysis of rice husk and plastics
    Berthold, Engamba Esso Samy
    Deng, Wei
    Zhou, Junbo
    Bertrand, Aguenkeu Mefinnya Elie
    Xu, Jun
    Jiang, Long
    Su, Sheng
    Hu, Song
    Hu, Xun
    Wang, Yi
    Xiang, Jun
    ENERGY, 2023, 281
  • [24] Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics
    Zhang, Xuesong
    Lei, Hanwu
    Zhu, Lei
    Zhu, Xiaolu
    Qian, Moriko
    Yadavalli, Gayatri
    Wu, Joan
    Chen, Shulin
    BIORESOURCE TECHNOLOGY, 2016, 220 : 233 - 238
  • [25] Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass: Effects of Nannochloropsis and Chlorella
    Wu, Zhiqiang
    Yang, Wangcai
    Yang, Bolun
    BIORESOURCE TECHNOLOGY, 2018, 249 : 501 - 509
  • [26] Co-pyrolysis of sewage sludge and lignocellulosic biomass: Synergistic effects on products characteristics and kinetics
    Liu, Yang
    Song, Yongmeng
    Fu, Jie
    Ao, Wenya
    Siyal, Asif Ali
    Zhou, Chunbao
    Liu, Chenglong
    Yu, Mengyan
    Zhang, Yingwen
    Dai, Jianjun
    Bi, Xiaotao
    ENERGY CONVERSION AND MANAGEMENT, 2022, 268
  • [27] Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes
    Burra, K. G.
    Gupta, A. K.
    APPLIED ENERGY, 2018, 220 : 408 - 418
  • [28] Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics
    Chen, Rongjie
    Zhang, Shiyu
    Yang, Xiaoxiao
    Li, Guanghao
    Zhou, Hui
    Li, Qinghai
    Zhang, Yanguo
    WASTE MANAGEMENT, 2021, 126 : 331 - 339
  • [29] Co-pyrolysis of sewage sludge and lignocellulosic biomass: Synergistic effects on products characteristics and kinetics
    Liu, Yang
    Song, Yongmeng
    Fu, Jie
    Ao, Wenya
    Siyal, Asif Ali
    Zhou, Chunbao
    Liu, Chenglong
    Yu, Mengyan
    Zhang, Yingwen
    Dai, Jianjun
    Bi, Xiaotao
    ENERGY CONVERSION AND MANAGEMENT, 2022, 268
  • [30] Characteristics and synergistic effects of co-pyrolysis of microalgae with polypropylene
    Jiang, Liyang
    Zhou, Zhen
    Xiang, Huan
    Yang, Yang
    Tian, Hong
    Wang, Jiawei
    FUEL, 2022, 314