Monolithic optical microlithography of high-density elastic circuits

被引:210
|
作者
Zheng, Yu-Qing [1 ]
Liu, Yuxin [2 ]
Zhong, Donglai [1 ]
Nikzad, Shayla [1 ]
Liu, Shuhan [1 ]
Yu, Zhiao [1 ,3 ]
Lw, Deyu [1 ]
Wu, Hung-Chin [1 ]
Zhu, Chenxin [1 ]
Li, Jinxing [1 ]
Tran, Helen [1 ]
Tok, Jeffrey B-H [1 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
ELECTRONICS; PROTEINS;
D O I
10.1126/science.abh3551
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polymeric electronic materials have enabled soft and stretchable electronics. However, the lack of a universal micro/nanofabrication method for skin-like and elastic circuits results in low device density and limited parallel signal recording and processing ability relative to silicon-based devices. We present a monolithic optical microlithographic process that directly micropatterns a set of elastic electronic materials by sequential ultraviolet light-triggered solubility modulation. We fabricated transistors with channel lengths of 2 micrometers at a density of 42,000 transistors per square centimeter. We fabricated elastic circuits including an XOR gate and a half adder, both of which are essential components for an arithmetic logic unit. Our process offers a route to realize wafer-level fabrication of complex, high-density, and multilayered elastic circuits with performance rivaling that of their rigid counterparts.
引用
收藏
页码:88 / +
页数:63
相关论文
共 50 条