Impact of magnetic field gradients on the free corrosion of iron

被引:75
|
作者
Sueptitz, Ralph [1 ]
Tschulik, K. [1 ]
Uhlemann, M. [1 ]
Gebert, A. [1 ]
Schultz, L. [1 ]
机构
[1] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01069 Dresden, Germany
关键词
Iron; Corrosion; Magnetic field; Free corrosion potential; Sulphuric acid; PASSIVATION; DISSOLUTION; ELECTRODES; BEHAVIOR; FORCES;
D O I
10.1016/j.electacta.2010.04.039
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The influence of magnetic fields oriented parallel and perpendicular to the electrode surface on the corrosion behaviour of differently shaped iron samples in low concentrated sulphuric acid solutions has been studied. It is demonstrated, that the relative sample-to-magnet configuration, which determines the magnetic flux density distribution in front of the electrode surface, is decisive for the free corrosion activity. In a configuration generating low magnetic flux density gradients the Lorentz force driven micro-convection leads to an anodic shift of the free corrosion potential. In contrast, a configuration yielding high magnetic flux density gradients causes a cathodic potential shift and leads to a suppression of the corrosion reaction. These effects are discussed on the basis of the Lorentz force and the magnetic field gradient force acting on the partial reaction steps during the corrosion process. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5200 / 5203
页数:4
相关论文
共 50 条
  • [31] MAGNETIC-FIELD GRADIENTS AND THEIR USES IN THE STUDY OF THE EARTHS MAGNETIC-FIELD - REPLY
    HARRISON, CGA
    SOUTHAM, JR
    JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1992, 44 (05): : 371 - 372
  • [32] Spent fuel corrosion and the impact of iron corrosion - The effects of hydrogen generation and formation of iron corrosion products
    Puranen, A.
    Barreiro, A.
    Evins, L-Z
    Spahiu, K.
    JOURNAL OF NUCLEAR MATERIALS, 2020, 542
  • [33] MAGNETIC-FIELD GRADIENTS AND THEIR USES IN THE STUDY OF THE EARTHS MAGNETIC-FIELD - COMMENT
    NELSON, JB
    MARCOTTE, DL
    HARDWICK, CD
    JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1992, 44 (05): : 367 - 370
  • [34] Effect of magnetic field on the corrosion of iron and St20 steel as studied by positron annihilation
    Pietrzak, Ryszard
    Szatanik, Roman
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (07): : 1822 - 1828
  • [35] Effect of magnetic field on the corrosion behavior of magnetostrictive iron-gallium alloy single crystals
    Jayaraman, T. V.
    Guruswamy, S.
    Free, M. L.
    CORROSION, 2007, 63 (11) : 1042 - 1047
  • [36] On the interior magnetic field in iron
    Alvarez, L
    PHYSICAL REVIEW, 1934, 45 (03): : 0225 - 0226
  • [37] Iron Electrodeposition in a Magnetic Field
    Matsushima, Hisayoshi
    Fukunaka, Yasuhiro
    Kikuchi, Shiomi
    Ispas, Adriana
    Bund, Andreas
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (10): : 9345 - 9353
  • [38] Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
    Heinrich, D.
    Goni, A. R.
    Osan, T. M.
    Cerioni, L. M. C.
    Smessaert, A.
    Klapp, S. H. L.
    Faraudo, J.
    Pusiol, D. J.
    Thomsen, C.
    SOFT MATTER, 2015, 11 (38) : 7606 - 7616
  • [39] On-chip magnetic particle transport by alternating magnetic field gradients
    Wirix-Speetjens, R
    de Boeck, J
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) : 1944 - 1946
  • [40] Effects of the Mean Field Gradients on Magnetic Field Line Random Walk
    Vlad, Madalina
    ASTROPHYSICAL JOURNAL, 2018, 867 (02):