Modal logic as dialogical logic

被引:7
|
作者
Blackburn, P [1 ]
机构
[1] Univ Saarland, D-66041 Saarbrucken, Germany
关键词
Model Theory; Modal Logic; Proof Theory; Modal Model; Hybrid Logic;
D O I
10.1023/A:1010358017657
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
The title reflects my conviction that, viewed semantically, modal logic is fundamentally dialogical: this conviction is based on the key role played by the notion of bisimulation in modal model theory. But this dialogical conception of modal logic does not seem to apply to modal proof theory, which is notoriously messy. Nonetheless. by making use of ideas which trace back to Arthur Prior (notably the use of nominals, special proposition symbols which 'name' worlds) I will show how to lift the dialogical conception to modal proof theory. I argue that this shift to hybrid logic has consequences for both modal and dialogical logic, and I discuss these in detail.
引用
收藏
页码:57 / 93
页数:37
相关论文
共 50 条
  • [41] MODAL HYBRID LOGIC
    Indrzejczak, Andrzej
    LOGIC AND LOGICAL PHILOSOPHY, 2007, 16 (2-3) : 147 - 257
  • [42] MAXIMALITY IN MODAL LOGIC
    FLAGG, RC
    FRIEDMAN, H
    ANNALS OF PURE AND APPLIED LOGIC, 1987, 34 (02) : 99 - 118
  • [43] Geometric Modal Logic
    Halimi, Brice
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2023, 64 (03) : 377 - 406
  • [44] A Modal Logic of Metaphor
    Segerberg, Krister
    STUDIA LOGICA, 2011, 99 (1-3) : 337 - 347
  • [45] CONTINGENCY AND MODAL LOGIC
    DEUTSCH, H
    PHILOSOPHICAL STUDIES, 1990, 60 (1-2) : 89 - 102
  • [46] LOGIC AND MODAL INTUITIONS
    TINDMAN, P
    MONIST, 1994, 77 (03): : 389 - 398
  • [47] Modal Multilattice Logic
    Kamide, Norihiro
    Shramko, Yaroslav
    LOGICA UNIVERSALIS, 2017, 11 (03) : 317 - 343
  • [48] A Modal Logic of Supervenience
    Fan, Jie
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2019, 60 (02) : 283 - 309
  • [49] Fragmenting modal logic
    Iaquinto, Samuele
    De Florio, Ciro
    Frigerio, Aldo
    INQUIRY-AN INTERDISCIPLINARY JOURNAL OF PHILOSOPHY, 2024,
  • [50] A modal nonmonotonic logic
    林作铨
    Science in China(Series E:Technological Sciences), 1996, (03) : 303 - 321