Chebyshev sets in geodesic spaces

被引:9
|
作者
Ariza-Ruiz, David [1 ]
Fernandez-Leon, Aurora [1 ]
Lopez-Acedo, Genaro [1 ]
Nicolae, Adriana [2 ]
机构
[1] Univ Seville, Dept Anal Matemat, Apdo 1160, E-41080 Seville, Spain
[2] Univ Babes Bolyai, Dept Math, Kogalniceanu 1, Cluj Napoca 400084, Romania
关键词
Chebyshev set; Metric projection; Geodesic space of bounded curvature; Convexity;
D O I
10.1016/j.jat.2016.02.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study several properties of Chebyshev sets in geodesic spaces. We focus on analyzing if some well-known results that characterize convexity of such sets in Hilbert spaces are also valid in the setting of geodesic spaces with bounded curvature. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 282
页数:18
相关论文
共 50 条
  • [41] CHEBYSHEV CONSTANT FOR CENTERED SETS
    FRIEDMAN, SL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) : 344 - 350
  • [42] A Note on The Convexity of Chebyshev Sets
    Narang, T. D.
    Sangeeta
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2009, 27 (01): : 59 - 63
  • [43] Convexity of Chebyshev Sets Revisited
    Deka, Konrad
    Varivoda, Marin
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (08): : 763 - 774
  • [44] Chebyshev centres and centrable sets
    Rao, TSSRK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) : 2593 - 2598
  • [45] Bregman distances and Chebyshev sets
    Bauschke, Heinz H.
    Wang, Xianfu
    Ye, Jane
    Yuan, Xiaoming
    JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) : 3 - 25
  • [46] Sets with External Chebyshev Layer
    A. R. Alimov
    M. I. Karlov
    Mathematical Notes, 2001, 69 : 269 - 273
  • [47] Locally Chebyshev sets on the plane
    A. A. Flerov
    Mathematical Notes, 2015, 97 : 136 - 142
  • [48] Chebyshev sets that are unions of planes
    Alimov, A. R.
    Tsar'kov, I. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2024, 79 (02) : 361 - 362
  • [49] On the structure of the complements of Chebyshev sets
    Alimov, AR
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2001, 35 (03) : 176 - 182
  • [50] CHEBYSHEV POLYNOMIALS FOR JULIA SETS
    KAMO, SO
    BORODIN, PA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1994, (05): : 65 - 67