Area-preserving diffeomorphisms in gauge theory on a non-commutative plane: a lattice study

被引:4
|
作者
Bietenholz, Wolfgang [1 ]
Bigarini, Antonio
Torrielli, Alessandro
机构
[1] DESY, John Neumannn Inst Comp, Platanenallee 6, D-15738 Zeuthen, Germany
[2] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy
[3] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy
[4] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[5] MIT, Dept Phys, Cambridge, MA 02139 USA
[6] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2007年 / 08期
关键词
non-commutative geometry; nonperturbative effects; field theories in lower dimensions; matrix methods;
D O I
10.1088/1126-6708/2007/08/041
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider Yang-Mills theory with the U(1) gauge group on a noncommutative plane. Perturbatively it was observed that the invariance of this theory under area-preserving diffeomorphisms (APDs) breaks down to a rigid subgroup SL(2, R). Here we present explicit results for the APD symmetry breaking at finite gauge coupling and finite non-commutativity. They are based on lattice simulations and measurements of Wilson loops with the same area but with a variety of different shapes. Our results are consistent with the expected loss of invariance under APDs. Moreover, they strongly suggest that non-perturbatively the SL(2, R) symmetry does not persist either.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Towards non-commutative topological gauge theory of gravity
    Garcia-Compeán, H
    Obregón, O
    Ramirez, C
    Sabido, M
    DEVELOPMENTS IN MATHEMATICAL AND EXPERIMENTAL PHYSICS, VOL A: COSMOLOGY AND GRAVITATION, 2002, : 71 - 78
  • [32] Chaos and entanglement spreading in a non-commutative gauge theory
    Willy Fischler
    Viktor Jahnke
    Juan F. Pedraza
    Journal of High Energy Physics, 2018
  • [33] Dynamics of Wilson observables in non-commutative gauge theory
    Abou-Zeid, M
    Dorn, H
    PHYSICS LETTERS B, 2001, 504 (1-2) : 165 - 173
  • [34] High energy scattering in non-commutative gauge theory
    Rozali, M
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2001, 39 : S584 - S587
  • [35] Geodesic equation in non-commutative gauge theory of gravity
    Touati, Abdellah
    Zaim, Slimane
    CHINESE PHYSICS C, 2022, 46 (10)
  • [36] Geodesic equation in non-commutative gauge theory of gravity
    Abdellah Touati
    Slimane Zaim
    Chinese Physics C, 2022, (10) : 197 - 210
  • [37] Chaos and entanglement spreading in a non-commutative gauge theory
    Fischler, Willy
    Jahnke, Viktor
    Pedraza, Juan F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [38] Non-commutative Hopf algebra of formal diffeomorphisms
    Brouder, C
    Frabetti, A
    Krattenthaler, C
    ADVANCES IN MATHEMATICS, 2006, 200 (02) : 479 - 524
  • [39] Transitivity of generic semigroups of area-preserving surface diffeomorphisms
    Koropecki, Andres
    Nassiri, Meysam
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (03) : 707 - 718
  • [40] AREA-PRESERVING IRROTATIONAL DIFFEOMORPHISMS OF THE TORUS WITH SUBLINEAR DIFFUSION
    Koropecki, Andres
    Tal, Fabio Armando
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) : 3483 - 3490