Visualization for high-dimensional data: VisHD

被引:0
|
作者
Yang, CC [1 ]
Chiang, CC [1 ]
Hung, YP [1 ]
Lee, GC [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
information visualization; dimension reduction; high-dimensional data;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a visualization tool, VisHD, that can visualize the spatial distribution of vector points in high dimensional feature space. It is important to handle high dimensional information in many areas of computer science. VisHD provides several methods for dimension reduction in order to map the data from high dimensional space to low dimensional one. Next, this system builds intuitive visualization for observing the characteristics of the data set, whether these data are pre-defined labels or not. In addition, some useful functions have been implemented to facilitate the information visualization. This paper, finally, gives some experiments and discussions for showing the abilities of VisHD for visualizing high-dimensional data.
引用
收藏
页码:692 / 696
页数:5
相关论文
共 50 条
  • [31] SCALABLE VISUALIZATION FOR HIGH-DIMENSIONAL SINGLE-CELL DATA
    Kim, Juho
    Russell, Nate
    Peng, Jian
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 623 - 634
  • [32] Supervised model-based visualization of high-dimensional data
    Kontkanen, Petri
    Lahtinen, Jussi
    Myllymäki, Petri
    Silander, Tomi
    Tirri, Henry
    Intelligent Data Analysis, 2000, 4 (3-4) : 213 - 227
  • [33] Beyond Multidimensional Data in Model Visualization: High-Dimensional and Complex Nonnumeric Data
    Villa-Vialaneix, Nathalie
    Ruiz-Gazen, Anne
    STATISTICAL ANALYSIS AND DATA MINING, 2015, 8 (04) : 232 - 239
  • [34] CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data
    Linderman, Michael D.
    Bjornson, Zach
    Simonds, Erin F.
    Qiu, Peng
    Bruggner, Robert V.
    Sheode, Ketaki
    Meng, Teresa H.
    Plevritis, Sylvia K.
    Nolan, Garry P.
    BIOINFORMATICS, 2012, 28 (18) : 2400 - 2401
  • [35] Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data
    Mwangi, Benson
    Soares, Jair C.
    Hasan, Khader M.
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 236 : 19 - 25
  • [36] Multidimensional scaling with discrimination coefficients for supervised visualization of high-dimensional data
    Berrar, Daniel
    Ohmayer, Georg
    NEURAL COMPUTING & APPLICATIONS, 2011, 20 (08): : 1211 - 1218
  • [37] The state-of-the-art on tours for dynamic visualization of high-dimensional data
    Lee, Stuart
    Cook, Dianne
    da Silva, Natalia
    Laa, Ursula
    Spyrison, Nicholas
    Wang, Earo
    Zhang, H. Sherry
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (04)
  • [38] Burning Sage: Reversing the Curse of Dimensionality in the Visualization of High-Dimensional Data
    Laa, Ursula
    Cook, Dianne
    Lee, Stuart
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (01) : 40 - 49
  • [39] Histogram Equalization and Specification for High-dimensional Data Visualization using RadViz
    Wang, Yan-Chao
    Zhang, Qian
    Lin, Feng
    Goh, Chi-Keong
    Wang, Xuan
    Seah, Hock-Soon
    CGI'17: PROCEEDINGS OF THE COMPUTER GRAPHICS INTERNATIONAL CONFERENCE, 2017,
  • [40] Visualization strategies and techniques for high-dimensional spatio-temporal data
    Schmidt, B
    Streit, U
    Uhlenkuken, C
    GEOGRAPHICAL INFORMATION '97: FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1997, : 248 - 253