Numerical Modeling of Tsunami-Generated Acoustic-Gravity Waves in Mesopause Airglow

被引:4
|
作者
Inchin, P. A. [1 ]
Heale, C. J.
Snively, J. B.
Zettergren, M. D.
机构
[1] Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL 32114 USA
关键词
acoustic-gravity waves; tsunami; numerical simulations; mesopause airglow; mesosphere; SUMATRA-ANDAMAN EARTHQUAKE; SPECTRAL ELEMENT METHOD; TOHOKU EARTHQUAKE; DEFORMATION; SLIP; FORMS;
D O I
10.1029/2022JA030301
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Numerical simulations of mesopause airglow (MA) fluctuations induced by tsunami-generated acoustic and gravity waves (TAGWs) are performed. Simulated tsunamis over realistic bathymetry are used to excite atmospheric waves at the surface level of a three-dimensional nonlinear and compressible neutral atmospheric model. The model incorporates the dynamics and chemistry of hydroxyl OH(3,1) MA under nighttime assumptions. We report case study results of eight recent large tsunami events and demonstrate that TAGW-induced MA fluctuations are readily detectable with modern ground- and space-based imagers, and may provide quantitative insight. The amplitudes of MA fluctuations reflect the evolution of ocean surface displacements, enhancing or decreasing accordingly, and revealing the tsunami's lobes and local wave focusing. The results suggest that MA observations have potential to supplement early-warning systems, providing information on spatial and temporal evolution of tsunami waves of similar to 10 cm and higher for the cases shown. They may find applications in tsunami tracking over large open ocean areas, as well as in the investigation or reconstruction of tsunami source characteristics.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A study of propagation of nonlinear acoustic-gravity waves in the middle and upper atmosphere by means of numerical modeling
    Gavrilov, N. M.
    Kshevetskii, S. P.
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 7 (06) : 788 - 794
  • [22] Locating the Tohoku-Oki 2011 tsunami source using acoustic-gravity waves
    Raveloson, A.
    Kind, R.
    Yuan, X.
    Ceranna, L.
    [J]. JOURNAL OF SEISMOLOGY, 2012, 16 (02) : 215 - 219
  • [23] Acoustic-gravity waves in a nonadiabatic atmosphere
    Lyahov, V. V.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2007, 43 (03) : 308 - 316
  • [24] VARIATIONAL PRINCIPLES FOR ACOUSTIC-GRAVITY WAVES
    BIOT, MA
    [J]. PHYSICS OF FLUIDS, 1963, 6 (06) : 772 - 778
  • [25] ACOUSTIC-GRAVITY WAVES IN MODEL THERMOSPHERES
    DANIELS, GM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1967, 72 (09): : 2419 - +
  • [26] NUMERICAL SIMULATIONS OF IMPULSIVELY EXCITED ACOUSTIC-GRAVITY WAVES IN A STELLAR ATMOSPHERE
    Gruszecki, M.
    Murawski, K.
    Kosovichev, A. G.
    Parchevsky, K. V.
    Zaqarashvili, T.
    [J]. ACTA PHYSICA POLONICA B, 2011, 42 (06): : 1333 - 1344
  • [27] PROPAGATION OF ACOUSTIC-GRAVITY WAVES IN ATMOSPHERE
    PRESS, F
    HARKRIDER, DG
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (10): : 3889 - &
  • [28] ACOUSTIC-GRAVITY WAVES IN THE THERMOSPHERE OF VENUS
    DELGENIO, AD
    SCHUBERT, G
    STRAUS, JM
    [J]. ICARUS, 1979, 39 (03) : 401 - 417
  • [29] Acoustic-gravity waves in a nonadiabatic atmosphere
    V. V. Lyahov
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2007, 43 : 308 - 316
  • [30] SPATIAL COHERENCE OF ACOUSTIC-GRAVITY WAVES
    HERRON, TJ
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1970, 51 (04): : 381 - &