Finite element-boundary element coupling algorithms for transient elastodynamics

被引:17
|
作者
Francois, S. [1 ]
Coulier, P. [1 ]
Degrande, G. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Civil Engn, B-3001 Leuven, Belgium
关键词
FE-BE modelling; Iterative coupling; Dynamic soil-structure interaction; Transient elastodynamics; SOIL-STRUCTURE INTERACTION; INTEGRAL-EQUATION; WAVE PROPAGATION; BEM; FEM; RADIATION; IMPACT; MODEL;
D O I
10.1016/j.enganabound.2014.11.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper discusses the coupling of finite element (FE) and boundary element (BE) methods for the solution of transient dynamic soil-structure interaction problems in the time domain. As both the FE and the BE method impose different requirements on the time step for reasons of stability and accuracy, iterative coupling schemes are applied since they allow for a different time discretization in both subdomains. Apart from a direct coupling approach, various sequential and parallel iterative coupling strategies are investigated, imposing either Neumann or Dirichlet boundary conditions on the FE and BE subdomains. The use of interface relaxation accelerates convergence, where Aitken's Delta(2)-method provides an optimal relaxation parameter for all iterative strategies considered. It is demonstrated that the boundary conditions applied to each subdomain strongly affect the efficiency of these algorithms; the application of Neumann boundary conditions on the stiffest subdomain results in the fastest convergence. The iterative coupling strategy is useful in the case where different time steps are used in both subdomains, though a direct coupling can also be used. The iterative coupling strategy is finally applied to the computation of ground vibrations from impact pile driving. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 121
页数:18
相关论文
共 50 条
  • [31] Combined Finite Element-Boundary Element analysis of a viscoelastic anechoic panel for underwater applications
    DiMeglio, A
    Jones, JC
    Coates, RFW
    Francis, DTI
    Wang, LS
    OCEANS '97 MTS/IEEE CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1997, : 1189 - 1194
  • [32] APPLICATIONS OF CONJUGATE GRADIENT METHODS TO HYBRID FINITE ELEMENT-BOUNDARY ELEMENT METHOD.
    Onuki, Takashi
    Ryuu, Shijun
    Sasakura, Nobukazu
    Bulletin of Centre for Informatics (Waseda University), 1986, 4 : 83 - 92
  • [33] Fast multipole accelerated finite element-boundary element analysis of shielded induction heaters
    Sabariego, RV
    Sergeant, P
    Gyselinck, J
    Dular, P
    Dupré, L
    Melkebeek, J
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) : 1407 - 1410
  • [34] A SELECTIVE REVIEW OF THE FINITE ELEMENT-ABC AND THE FINITE ELEMENT-BOUNDARY INTEGRAL METHODS FOR ELECTROMAGNETIC SCATTERING
    VOLAKIS, JL
    CHATTERJEE, A
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1995, 50 (5-6): : 499 - 509
  • [35] Finite Element-Boundary Element Method Based Simulations of Electromagnetic Railgun in Augmented Configurations
    Praneeth, S. R. Naga
    Singh, Bhim
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2022, 7 : 320 - 327
  • [36] FINITE ELEMENT/BOUNDARY ELEMENT COUPLING FOR AIRBAG DEPLOYMENT
    van Opstal, T. M.
    van Brummelen, E. H.
    COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING IV, 2011, : 124 - 134
  • [37] Boundary element and finite element coupling for aeroacoustics simulations
    Balin, Nolwenn
    Casenave, Fabien
    Dubois, Francois
    Duceau, Eric
    Duprey, Stefan
    Terrasse, Isabelle
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 : 274 - 296
  • [38] THE COUPLING OF BOUNDARY ELEMENT AND FINITE-ELEMENT METHODS
    HSIAO, GC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T493 - T503
  • [39] A Hybrid Iterative-Direct Solver Based on Fast Multipole Method for Efficient Finite Element-Boundary Element Coupling Analysis
    Zhang, Ning
    Yan, Shuai
    Ren, Zhuoxiang
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [40] An Adaptive Polygonal Scaled Boundary Finite Element Method for Elastodynamics
    Zhang, Z. H.
    Yang, Z. J.
    Li, J. H.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2016, 13 (02)