Finite element-boundary element coupling algorithms for transient elastodynamics

被引:17
|
作者
Francois, S. [1 ]
Coulier, P. [1 ]
Degrande, G. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Civil Engn, B-3001 Leuven, Belgium
关键词
FE-BE modelling; Iterative coupling; Dynamic soil-structure interaction; Transient elastodynamics; SOIL-STRUCTURE INTERACTION; INTEGRAL-EQUATION; WAVE PROPAGATION; BEM; FEM; RADIATION; IMPACT; MODEL;
D O I
10.1016/j.enganabound.2014.11.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper discusses the coupling of finite element (FE) and boundary element (BE) methods for the solution of transient dynamic soil-structure interaction problems in the time domain. As both the FE and the BE method impose different requirements on the time step for reasons of stability and accuracy, iterative coupling schemes are applied since they allow for a different time discretization in both subdomains. Apart from a direct coupling approach, various sequential and parallel iterative coupling strategies are investigated, imposing either Neumann or Dirichlet boundary conditions on the FE and BE subdomains. The use of interface relaxation accelerates convergence, where Aitken's Delta(2)-method provides an optimal relaxation parameter for all iterative strategies considered. It is demonstrated that the boundary conditions applied to each subdomain strongly affect the efficiency of these algorithms; the application of Neumann boundary conditions on the stiffest subdomain results in the fastest convergence. The iterative coupling strategy is useful in the case where different time steps are used in both subdomains, though a direct coupling can also be used. The iterative coupling strategy is finally applied to the computation of ground vibrations from impact pile driving. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 121
页数:18
相关论文
共 50 条
  • [1] A domain decomposition algorithm with finite element-boundary element coupling
    Bo Yan
    Juan Du
    Ning Hu
    Hideki Sekine
    Applied Mathematics and Mechanics, 2006, 27 : 519 - 525
  • [2] A domain decomposition algorithm with finite element-boundary element coupling
    Yan, B
    Du, J
    Hu, N
    Sekine, H
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (04) : 519 - 525
  • [3] A DOMAIN DECOMPOSITION ALGORITHM WITH FINITE ELEMENT-BOUNDARY ELEMENT COUPLING
    严波
    杜娟
    胡宁
    关根英树
    Applied Mathematics and Mechanics(English Edition), 2006, (04) : 519 - 525
  • [4] A symmetrical formulation for finite element-boundary element coupling in fracture mechanics
    Mouhoubi, Saïda
    Bonnet, Marc
    Ulmet, Laurent
    Revue Europeenne des Elements, 2002, 11 (2-4): : 277 - 289
  • [5] Convergence of the domain decomposition finite element-boundary element coupling methods
    El-Gebeily, M
    Elleithy, WM
    Al-Gahtani, HJ
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (43) : 4851 - 4867
  • [6] Coupling model of distinct element-boundary element
    Jin, F.
    Jia, W.W.
    Wang, G.L.
    Shuili Xuebao/Journal of Hydraulic Engineering, 2001, (01):
  • [7] An iterative finite element-boundary element algorithm
    Lin, CC
    Lawton, EC
    Caliendo, JA
    Anderson, LR
    COMPUTERS & STRUCTURES, 1996, 59 (05) : 899 - 909
  • [8] TWO DIMENSIONAL FINITE ELEMENT-BOUNDARY ELEMENT COUPLING MODEL OF MAGNETOTELLURIC SOUNDING
    Luo Huan-yen and Zhang Shu-xia(Institute of Geology
    地震地质, 1987, (02) : 9 - 16
  • [9] Adaptive finite element-boundary element solution of boundary value problems
    Steinbach, O
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 106 (02) : 307 - 316
  • [10] A Finite Element-Boundary Element Algorithm for Inhomogeneous Boundary Value Problems
    M. Jung
    O. Steinbach
    Computing, 2002, 68 : 1 - 17