A direct current discharge, a transversal in relation to the gas flow pulse-periodic electrode discharge, a freely localized microwave discharge and a surface microwave discharge under condition of a high-speed flow are considered. It is shown, that all types of discharge result in a reliable ignition of hydrocarbon fuel. In order to determine the influence of different channels of energy transfer on the ignition of combustible mixtures in a high speed flow, the kinetic model of ignition of hydrocarbon-air mixtures was developed, taking into account the influence of the electric field on molecule dissociation and the creation of active radicals i.e., excited and charged particles (electrons, positive, and negative ions), under conditions of nonequilibrium plasma in the gas discharge. Mathematical modeling has revealed the strong influence of the reduced electric field on the induction period.