Localization strategies for autonomous mobile robots: A review

被引:66
|
作者
Panigrahi, Prabin Kumar [1 ]
Bisoy, Sukant Kishoro [1 ]
机构
[1] C V Raman Global Univ, Dept Comp Sci & Engn, Janla, Bhubaneswar 752054, Odisha, India
关键词
Mobile robot localization; Probabilistic approach; RFID; SLAM; Evolutionary approach; SLAM; NAVIGATION; ALGORITHM; FASTSLAM; EKF;
D O I
10.1016/j.jksuci.2021.02.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Localization forms the heart of various autonomous mobile robots. For efficient navigation, these robots need to adopt effective localization strategy. This paper, presents a comprehensive review on localization system, problems, principle and approaches for mobile robots. First, we classify the localization problems in to three categories based on the information of initial position of the robot. Next, we discuss on robot position update principles. Then, we discuss key techniques to localize the mobile robot such as: proba-bilistic approach, autonomous map building and radio frequency identification (RFID) based scheme. In the probabilistic localization section, we discuss the Markov localization and Kalman filter along with its extended versions. Autonomous map building focuses on the widely used simultaneous localization and mapping (SLAM) approach. This section also discusses on applying SLAM to localize brain -controlled mobile robots. Next, we discuss on applying evolutionary approaches to estimate optimal position. The RFID scheme addresses on effective utilization of RFID tags to track objects and position the robot. We then analyze on position and orientation errors occurred by different localization strate-gies. We conclude this paper by highlighting future research possibilities. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:6019 / 6039
页数:21
相关论文
共 50 条
  • [21] Integrated control strategies supporting autonomous functionalities in mobile robots
    Sights, B.
    Everett, H. R.
    Pacis, E. Biagtan
    Kogut, G.
    Thompson, M.
    3rd International Conference on Computing, Communications and Control Technologies, Vol 1, Proceedings, 2005, : 283 - 288
  • [22] NAVIGATION STRATEGIES FOR MULTIPLE AUTONOMOUS MOBILE ROBOTS MOVING IN FORMATION
    WANG, PKC
    JOURNAL OF ROBOTIC SYSTEMS, 1991, 8 (02): : 177 - 195
  • [23] Self-assembly strategies in a group of autonomous mobile robots
    O'Grady, Rehan
    Gross, Roderich
    Christensen, Anders Lyhne
    Dorigo, Marco
    AUTONOMOUS ROBOTS, 2010, 28 (04) : 439 - 455
  • [24] A Review of Sensing Technologies for Indoor Autonomous Mobile Robots
    Liu, Yu
    Wang, Shuting
    Xie, Yuanlong
    Xiong, Tifan
    Wu, Mingyuan
    SENSORS, 2024, 24 (04)
  • [25] Review of Autonomous Path Planning Algorithms for Mobile Robots
    Qin, Hongwei
    Shao, Shiliang
    Wang, Ting
    Yu, Xiaotian
    Jiang, Yi
    Cao, Zonghan
    DRONES, 2023, 7 (03)
  • [26] Autonomous mobile robots
    Borkowski, A.
    Prace Naukowe Instytutu Cybernetyki Technicznej, Politechniki Wroclawskiej, 1988, (75):
  • [27] AUTONOMOUS MOBILE ROBOTS
    CHATILA, R
    LAUMOND, JP
    RECHERCHE, 1985, 16 (170): : 1276 - &
  • [28] AUTONOMOUS MOBILE ROBOTS
    REMBOLD, U
    ROBOTERSYSTEME, 1988, 4 (01): : 17 - 26
  • [29] Configurable simulation strategies for testing pollutant plume source localization algorithms using autonomous multisensor mobile robots
    Lewis, Tyrell
    Bhaganagar, Kiran
    International Journal of Advanced Robotic Systems, 2022, 19 (02)
  • [30] Configurable simulation strategies for testing pollutant plume source localization algorithms using autonomous multisensor mobile robots
    Lewis, Tyrell
    Bhaganagar, Kiran
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2022, 19 (02):