Representations of the generalized Lie algebra sl(2)q

被引:4
|
作者
Dobrev, VK
Sudbery, A
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
[2] Univ York, Dept Math, York YO1 5DD, N Yorkshire, England
来源
关键词
D O I
10.1088/0305-4470/31/31/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct finite-dimensional irreducible representations of two quantum algebras related to the generalized Lie algebra sl(2)(q) introduced by Lyubashenko and Sudbery. We consider separately the cases of q generic and q at roots of unity. Some of the representations have no classical analogue even for generic q. Some of the representations have no analogue to the finite-dimensional representations of the quantized enveloping U-q(sl(2)), while in those that do there are different matrix elements.
引用
收藏
页码:6635 / 6645
页数:11
相关论文
共 50 条
  • [31] INTEGRABILITY OF CERTAIN REPRESENTATIONS OF LIE-ALGEBRA 0(P,Q)
    MAILLARD, JM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (02): : 75 - 77
  • [32] Constructing representations of the nonstandardly deformed algebra slε(2)
    Karakhanyan, DR
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (02) : 177 - 189
  • [33] Imaginary verma modules for the extended affine lie algebra sl2(C-q)
    Dokuchaev, M
    Figueorado, LMV
    Futorny, V
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (01) : 289 - 308
  • [34] ON REPRESENTATIONS OF POINCARES LIE ALGEBRA
    FLATO, M
    GUILLOT, JC
    STERNHEI.D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (14): : 914 - &
  • [35] Contractions of Lie algebra representations
    Cattaneo, U
    Wreszinski, WF
    REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (10) : 1179 - 1207
  • [36] Representations of a class of Lie Algebra
    Zhang Yanyan
    Liu Jianbo
    Jiao Zhezhe
    Li Wenyi
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 2015 - +
  • [37] Deformations of the three-dimensional Lie algebra sl(2)
    Ibrayeva, A. A.
    Ibraev, Sh Sh
    Turbayev, B. E.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 97 (01): : 44 - 51
  • [38] NONLINEAR REALIZATIONS OF LIE-ALGEBRA OF SL(2,C)
    DALTON, BJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (04): : 585 - 585
  • [39] Conjugacy results for the Lie algebra sl2 over an algebra which is a UFD
    Berman, Stephen
    Morita, Jun
    LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS AND THEIR APPLICATIONS, 2007, 442 : 17 - 40
  • [40] Representations of the q-deformed Lie algebra of the group of motions of the euclidean plane
    Silvestrov, SD
    Turowska, LB
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 160 (01) : 79 - 114