Universal Subspaces for Local Unitary Groups of Fermionic Systems

被引:6
|
作者
Chen, Lin [1 ,2 ,3 ,5 ]
Chen, Jianxin [2 ,4 ]
Dokovic, Dragomir Z. [1 ,2 ]
Zeng, Bei [2 ,4 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117548, Singapore
[4] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[5] Singapore Univ Technol & Design, Singapore 138682, Singapore
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
SCHMIDT DECOMPOSITION; N-REPRESENTABILITY; ENTANGLEMENT; MATRIX; STATE;
D O I
10.1007/s00220-014-2187-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let V = boolean AND V-N be the N-fermion Hilbert space with M-dimensional single particle space V and 2N <= M. We refer to the unitary group G of V as the local unitary (LU) group. We fix an orthonormal (o.n.) basis |v(1)>, ... , |v(M)> of V. Then the Slater determinants e(i1), ... , i(N) := |v(i1). boolean AND v(i2) boolean AND ... boolean AND v(iN) > with i(1) < ... < i(N) form an o.n. basis of V. Let S subset of V be the subspace spanned by all e(i1), ... , i(N) such that the set {i(1), ... , i(N)} contains no pair {2k - 1, 2k}, k an integer. We say that the |psi > is an element of S are single occupancy states (with respect to the basis |v(1)>, ... , |v(M)>). We prove that for N = 3 the subspace S is universal, i.e., each G-orbit in V meets S, and that this is false for N > 3. If M is even, the well known BCS states are not LU-equivalent to any single occupancy state. Our main result is that for N = 3 and M even there is a universal subspace W subset of S spanned by M(M - 1)(M - 5)/6 states e(i1), ..., i(N). Moreover, the number M(M - 1)(M - 5)/6 is minimal.
引用
收藏
页码:541 / 563
页数:23
相关论文
共 50 条
  • [11] On local descent for unitary groups
    Soudry, David
    Tanay, Yaacov
    JOURNAL OF NUMBER THEORY, 2015, 146 : 557 - 626
  • [12] Generation of local unitary groups
    Brandhorst, Simon
    Hofmann, Tommy
    Manthe, Sven
    JOURNAL OF ALGEBRA, 2022, 609 : 484 - 513
  • [13] Universal covering groups of unitary groups of von Neumann algebras
    Sarkowicz, Pawel
    STUDIA MATHEMATICA, 2025,
  • [14] COMMON REDUCING UNITARY SUBSPACES AND DECOHERENCE IN QUANTUM SYSTEMS
    Pastuszak, Grzegorz
    Jamiolkowski, Andrzej
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 253 - 270
  • [15] WANDERING SUBSPACES AND FUSION FRAME GENERATORS FOR UNITARY SYSTEMS
    Liu, Aifang
    Li, Pengtong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (04) : 848 - 863
  • [16] UNITARY GROUPS OVER LOCAL RINGS
    Cruickshank, J.
    Herman, A.
    Quinlan, R.
    Szechtman, F.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (02)
  • [17] Local models for ramified unitary groups
    Krämer, N
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2003, 73 (1): : 67 - 80
  • [18] ANALYSIS OF UNITARY GROUPS ON LOCAL RINGS
    BAEZA, R
    ARCHIV DER MATHEMATIK, 1973, 24 (02) : 144 - 157
  • [19] LOCAL BORCHERDS PRODUCTS FOR UNITARY GROUPS
    Hofmann, Eric
    NAGOYA MATHEMATICAL JOURNAL, 2019, 234 : 139 - 169
  • [20] UNITARY GROUPS OVER LOCAL RINGS
    JAMES, DG
    JOURNAL OF ALGEBRA, 1978, 52 (02) : 354 - 363