Universal Subspaces for Local Unitary Groups of Fermionic Systems

被引:6
|
作者
Chen, Lin [1 ,2 ,3 ,5 ]
Chen, Jianxin [2 ,4 ]
Dokovic, Dragomir Z. [1 ,2 ]
Zeng, Bei [2 ,4 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117548, Singapore
[4] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[5] Singapore Univ Technol & Design, Singapore 138682, Singapore
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
SCHMIDT DECOMPOSITION; N-REPRESENTABILITY; ENTANGLEMENT; MATRIX; STATE;
D O I
10.1007/s00220-014-2187-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let V = boolean AND V-N be the N-fermion Hilbert space with M-dimensional single particle space V and 2N <= M. We refer to the unitary group G of V as the local unitary (LU) group. We fix an orthonormal (o.n.) basis |v(1)>, ... , |v(M)> of V. Then the Slater determinants e(i1), ... , i(N) := |v(i1). boolean AND v(i2) boolean AND ... boolean AND v(iN) > with i(1) < ... < i(N) form an o.n. basis of V. Let S subset of V be the subspace spanned by all e(i1), ... , i(N) such that the set {i(1), ... , i(N)} contains no pair {2k - 1, 2k}, k an integer. We say that the |psi > is an element of S are single occupancy states (with respect to the basis |v(1)>, ... , |v(M)>). We prove that for N = 3 the subspace S is universal, i.e., each G-orbit in V meets S, and that this is false for N > 3. If M is even, the well known BCS states are not LU-equivalent to any single occupancy state. Our main result is that for N = 3 and M even there is a universal subspace W subset of S spanned by M(M - 1)(M - 5)/6 states e(i1), ..., i(N). Moreover, the number M(M - 1)(M - 5)/6 is minimal.
引用
收藏
页码:541 / 563
页数:23
相关论文
共 50 条
  • [1] Universal Subspaces for Local Unitary Groups of Fermionic Systems
    Lin Chen
    Jianxin Chen
    Dragomir Ž. Đoković
    Bei Zeng
    Communications in Mathematical Physics, 2015, 333 : 541 - 563
  • [2] Universal Equation of State of a Unitary Fermionic Gas
    Bhaduri, R. K.
    van Dijk, W.
    Murthy, M. V. N.
    PHYSICAL REVIEW LETTERS, 2012, 108 (26)
  • [3] LOCAL SYSTEMS IN UNIVERSAL GROUPS
    LEINEN, F
    ARCHIV DER MATHEMATIK, 1983, 41 (05) : 401 - 403
  • [4] Systems of subspaces of a unitary space
    Bondarenko, Vitalij M.
    Futorny, Vyacheslav
    Klimchuk, Tatiana
    Sergeichuk, Vladimir V.
    Yusenko, Kostyantyn
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2561 - 2573
  • [5] Local systems and finite unitary and symplectic groups
    Katz, Nicholas M.
    Pham Huu Tiep
    ADVANCES IN MATHEMATICS, 2019, 358
  • [6] Local-density-functional theory for superfluid fermionic systems: The unitary gas
    Bulgac, Aurel
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [7] Universal subspaces for compact Lie groups
    An, Jinpeng
    Dokovic, Dragomir Z.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 647 : 151 - 173
  • [8] Sampling in Unitary Invariant Subspaces Associated to LCA Groups
    A. G. García
    M. A. Hernández-Medina
    G. Pérez-Villalón
    Results in Mathematics, 2017, 72 : 1725 - 1745
  • [9] Sampling in Unitary Invariant Subspaces Associated to LCA Groups
    Garcia, A. G.
    Hernandez-Medina, M. A.
    Perez-Villalon, G.
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 1725 - 1745
  • [10] A composite parameterization of unitary groups, density matrices and subspaces
    Spengler, Christoph
    Huber, Marcus
    Hiesmayr, Beatrix C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)