On twisted factorizations of block tridiagonal matrices

被引:2
|
作者
Gansterer, Wilfried N. [1 ]
Koenig, Gerhard [2 ]
机构
[1] Univ Vienna, Res Lab Computat Technol & Applicat, A-1010 Vienna, Austria
[2] Univ Vienna, Dept Computat Biolog Chem, A-1010 Vienna, Austria
关键词
twisted factorizations; twisted block factorizations; block tridiagonal eigenvalue problem; eigenvector computation; REPRESENTATIONS; IMPLEMENTATION; EIGENVECTOR; ALGORITHM; INVERSE;
D O I
10.1016/j.procs.2010.04.031
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Non-symmetric and symmetric twisted block factorizations of block tridiagonal matrices are discussed. In contrast to non-blocked factorizations of this type, localized pivoting strategies can be integrated which improves numerical stability without causing any extra fill-in. Moreover, the application of such factorizations for approximating an eigenvector of a block tridiagonal matrix, given an approximation of the corresponding eigenvalue, is outlined. A heuristic strategy for determining a suitable starting vector for the underlying inverse iteration process is proposed. (C) 2010 Published by Elsevier Ltd.
引用
收藏
页码:279 / 287
页数:9
相关论文
共 50 条