共 50 条
On twisted factorizations of block tridiagonal matrices
被引:2
|作者:
Gansterer, Wilfried N.
[1
]
Koenig, Gerhard
[2
]
机构:
[1] Univ Vienna, Res Lab Computat Technol & Applicat, A-1010 Vienna, Austria
[2] Univ Vienna, Dept Computat Biolog Chem, A-1010 Vienna, Austria
来源:
关键词:
twisted factorizations;
twisted block factorizations;
block tridiagonal eigenvalue problem;
eigenvector computation;
REPRESENTATIONS;
IMPLEMENTATION;
EIGENVECTOR;
ALGORITHM;
INVERSE;
D O I:
10.1016/j.procs.2010.04.031
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
Non-symmetric and symmetric twisted block factorizations of block tridiagonal matrices are discussed. In contrast to non-blocked factorizations of this type, localized pivoting strategies can be integrated which improves numerical stability without causing any extra fill-in. Moreover, the application of such factorizations for approximating an eigenvector of a block tridiagonal matrix, given an approximation of the corresponding eigenvalue, is outlined. A heuristic strategy for determining a suitable starting vector for the underlying inverse iteration process is proposed. (C) 2010 Published by Elsevier Ltd.
引用
收藏
页码:279 / 287
页数:9
相关论文