This study shows an approach to combine a high electrical conductivity of one composite layer with a high Seebeck coefficient of another composite layer in a double-layer composite, resulting in high thermoelectric power factor. Flexible double-layer-composites, made from Bi2Te3-based-alloy/polylactic acid (BTBA/PLA) composites and Ag/PLA composites, are synthesized by solution additive manufacturing. With the increase in Ag volume-ratio from 26.3% to 41.7% in Ag/PLA layers, the conductivity of the double-layer composites increases from 12 S cm(-1)to 1170 S cm(-1), while the Seebeck coefficient remains approximate to 80 mu V K(-1)at 300 K. With further increase in volume ratio of Ag until 45.6% in Ag/PLA composite layer, the electrical conductivity of the double-layer composites increases to 1710 S cm(-1), however, with a slight decrease of the Seebeck coefficient to 64 mu V K-1. The electrical conductivity and Seebeck coefficient vary only to a limited extent with the temperature. The high Seebeck coefficient is due to scattering of low energy charge carriers across compositionally graded interfaces. A power factor of 875 mu W m(-1) K(-2)is achieved at 360 K for 41.7 vol.% Ag in the Ag/PLA layers. Solution additive manufacturing can directly print this double-layer composite into intricate geometries, making this process is promising for large-scale fabrication of thermoelectric composites.