TCAD modeling of neuromorphic systems based on ferroelectric tunnel junctions

被引:3
|
作者
He, Yu [1 ]
Ng, Wei-Choon [1 ]
Smith, Lee [1 ]
机构
[1] Synopsys Inc, Mountain View, CA 94043 USA
关键词
TCAD; Ferroelectric tunnel junction; Synapse; Memristor; Spiking neural network; DEVICES; PATTERN; MEMORY;
D O I
10.1007/s10825-020-01544-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new compact model for HfO2-based ferroelectric tunnel junction (FTJ) memristors is constructed based on detailed physical modeling using calibrated TCAD simulations. A multi-domain configuration of the ferroelectric material is demonstrated to produce quasi-continuous conductance of the FTJ. This behavior is demonstrated to enable a robust spike-timing-dependent plasticity-type learning capability, making FTJs suitable for use as synaptic memristors in a spiking neural network. Using both TCAD-SPICE mixed-mode and pure SPICE compact model approaches, we apply the newly developed model to a crossbar array configuration in a handwritten digit recognition neuromorphic system and demonstrate an 80% successful recognition rate. The applied methodology demonstrates the use of TCAD to help develop and calibrate SPICE models in the study of neuromorphic systems.
引用
收藏
页码:1444 / 1449
页数:6
相关论文
共 50 条
  • [21] FERROELECTRIC TUNNEL JUNCTIONS Crossing the wall
    Tsymbal, Evgeny Y.
    Velev, Julian P.
    NATURE NANOTECHNOLOGY, 2017, 12 (07) : 614 - 615
  • [22] Predictive modelling of ferroelectric tunnel junctions
    Julian P Velev
    John D Burton
    Mikhail Ye Zhuravlev
    Evgeny Y Tsymbal
    npj Computational Materials, 2
  • [23] Giant electroresistance in ferroelectric tunnel junctions
    Zhuravlev, MY
    Sabirianov, RF
    Jaswal, SS
    Tsymbal, EY
    PHYSICAL REVIEW LETTERS, 2005, 94 (24)
  • [24] Predictive modelling of ferroelectric tunnel junctions
    Velev, Julian P.
    Burton, John D.
    Zhuravlev, Mikhail Ye
    Tsymbal, Evgeny Y.
    NPJ COMPUTATIONAL MATERIALS, 2016, 2
  • [25] Functional ferroelectric tunnel junctions on silicon
    Rui Guo
    Zhe Wang
    Shengwei Zeng
    Kun Han
    Lisen Huang
    Darrell G. Schlom
    T. Venkatesan
    Jingsheng Ariando
    Scientific Reports, 5
  • [26] Ferroelectric tunnel junctions with graphene electrodes
    Lu, H.
    Lipatov, A.
    Ryu, S.
    Kim, D. J.
    Lee, H.
    Zhuravlev, M. Y.
    Eom, C. B.
    Tsymbal, E. Y.
    Sinitskii, A.
    Gruverman, A.
    NATURE COMMUNICATIONS, 2014, 5
  • [27] Functional ferroelectric tunnel junctions on silicon
    Guo, Rui
    Wang, Zhe
    Zeng, Shengwei
    Han, Kun
    Huang, Lisen
    Schlom, Darrell G.
    Venkatesan, T.
    Ariando
    Chen, Jingsheng
    SCIENTIFIC REPORTS, 2015, 5
  • [28] FERROELECTRIC TUNNEL JUNCTIONS Beyond the barrier
    Tsymbal, E. Y.
    Gruverman, A.
    NATURE MATERIALS, 2013, 12 (07) : 602 - 604
  • [29] Ultralow Energy Consumption and Fast Neuromorphic Computing Based on La0.1Bi0.9FeO3 Ferroelectric Tunnel Junctions
    Gao, Pan
    Duan, Mengyuan
    Yang, Guanghong
    Zhang, Weifeng
    Jia, Caihong
    NANO LETTERS, 2024, 24 (35) : 10767 - 10775
  • [30] Four-state memory based on ferroelectric tunnel junctions with double ferroelectric layers
    Chen, Geng
    Ma, Zhijun
    Zhou, Peng
    Mei, Zhiheng
    Liang, Kun
    Zhang, Tianjin
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (06):