Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries

被引:73
|
作者
Chen, Yanjun [1 ,2 ,3 ]
Xu, Youlong [1 ,2 ,3 ]
Sun, Xiaofei [1 ,2 ,3 ]
Wang, Chao [1 ,2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Shaanxi Engn Res Ctr Adv Energy Mat & Devices, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion battery; Al-doping; NASICON; Slow-charge rapid-discharge; Structure-stability; High ionic-conductivity; CARBON-COATED NA3V2(PO4)(3); ENERGY-STORAGE; ELECTRODE MATERIALS; RAMAN-SCATTERING; LITHIUM; NANOCOMPOSITES; NANOFIBERS; CANDIDATE; PHOSPHATE; INSERTION;
D O I
10.1016/j.jpowsour.2017.11.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a promising cathode material in Na-ion batteries, Al-doped NASICON-type Na3V2-5Alx(PO4)(3)/C (0 <= x <= 0.03) samples are synthesized and characterized. The doping effects on the crystal structure are investigated by XRD and XPS, indicating that low dose of Al3+ doping generates no damage on the structure of the material, and aluminum is substituted for the vanadium site successfully. Electron microscopy and Raman data show that amorphous carbon coated on the matrix can enhance the electron conductivity. The electrochemical kinetic response of Al3+ doping are tested based on "slow-charge and rapid-discharge" electrochemical mode, results from before and after the cycles show that the doping samples have strong structure stability and excellent electrochemical performance because of low internal resistances and high ion conductivity. Thus, Na3V1.98Al0.02(PO4)(3)/C exhibits an initial reversible capacity of 102.7 mAh g(-1) at 10 mA g(-1) in the potential range between 2.3 and 3.8 V and delivers a discharge value of 95 mAh g(-1) vs. 59.9 mAh g(-1) of NVP/C at current density of 70 mA g(-1) discharge after 50 cycles. The ionic conductivity of Na3V1.98Al0.02(PO4)(3)/C sample at 3.4 V after 50 cycles at 10 mA g(-1) charge 200 mA g(-1) discharge is 1.31 x 10(-12) cm(2)s(-1), four orders of magnitude higher than the undoped one(7.79 x 10-(17) cm(2)s(-1)).
引用
收藏
页码:82 / 92
页数:11
相关论文
共 50 条
  • [31] Na3V2(PO4)3 with specially designed carbon framework as high performance cathode for sodium-ion batteries
    Zheng, Li-Li
    Xue, Yuan
    Deng, Liang
    Wu, Guo-Rui
    Hao, Su-E.
    Wang, Zhen-bo
    CERAMICS INTERNATIONAL, 2019, 45 (04) : 4637 - 4644
  • [32] A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries
    Liying Shen
    Yong Li
    Swagata Roy
    Xiuping Yin
    Wenbo Liu
    Shanshan Shi
    Xuan Wang
    Xuemin Yin
    Jiujun Zhang
    Yufeng Zhao
    Chinese Chemical Letters, 2021, 32 (11) : 3570 - 3574
  • [33] Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries
    Li, Hui
    Yu, Xiqian
    Bai, Ying
    Wu, Feng
    Wu, Chuan
    Liu, Liang-Yu
    Yang, Xiao-Qing
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) : 9578 - 9586
  • [34] Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries
    Samigullin, Ruslan R.
    Zakharkin, Maxim V.
    Drozhzhin, Oleg A.
    Antipov, Evgeny V.
    ENERGIES, 2023, 16 (07)
  • [35] Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries
    Aragon, M. J.
    Lavela, P.
    Alcantara, R.
    Tirado, J. L.
    ELECTROCHIMICA ACTA, 2015, 180 : 824 - 830
  • [36] Preparation of Na3V2(PO4)3 sodium-ion battery cathode material
    Shang, Jianping
    Ma, Yuqin
    Fan, Hua-Jun Shawn
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2023, 18 (03)
  • [37] High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries
    Kang, Jungwon
    Baek, Sora
    Mathew, Vinod
    Gim, Jihyeon
    Song, Jinju
    Park, Hyosun
    Chae, Eunji
    Rai, Alok Kumar
    Kim, Jaekook
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (39) : 20857 - 20860
  • [38] Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries
    Li, Hui
    Bai, Ying
    Wu, Feng
    Ni, Qiao
    Wu, Chuan
    SOLID STATE IONICS, 2015, 278 : 281 - 286
  • [39] Investigating the influence of sodium sources towards improved Na3V2(PO4)3 cathode of sodium-ion batteries
    Liu, Xiaohong
    Feng, Guilin
    Wu, Zhenguo
    Wang, Dong
    Wu, Chen
    Yang, Lin
    Xiang, Wei
    Chen, Yanxiao
    Guo, Xiaodong
    Zhong, Benhe
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 815
  • [40] On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries
    Aragon, M. J.
    Gutierrez, J.
    Klee, R.
    Lavela, P.
    Alcantara, R.
    Tirado, J. L.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 784 : 47 - 54