Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass

被引:89
|
作者
Alexandrou, C. [1 ,2 ]
Bacchio, S. [2 ]
Constantinou, M. [3 ]
Finkenrath, J. [2 ]
Hadjiyiannakou, K. [1 ,2 ]
Jansen, K. [4 ]
Koutsou, G. [2 ]
Panagopoulos, H. [1 ]
Spanoudes, G. [1 ]
机构
[1] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus
[2] Cyprus Inst, Computat Based Sci & Technol Res Ctr, 20 Kavafi St, CY-2121 Nicosia, Cyprus
[3] Temple Univ, Dept Phys, 1925 N 12th St, Philadelphia, PA 19122 USA
[4] DESY, NIC, Platanenallee 6, D-15738 Zeuthen, Germany
来源
PHYSICAL REVIEW D | 2020年 / 101卷 / 09期
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
DEEP-INELASTIC-SCATTERING; NONPERTURBATIVE RENORMALIZATION; ASYMMETRY; POLARIZATION; SYSTEMS; TENSOR; G1;
D O I
10.1103/PhysRevD.101.094513
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We evaluate the gluon and quark contributions to the spin of the proton using an ensemble of gauge configurations generated at physical pion mass. We compute all valence and sea quark contributions to high accuracy. We perform a nonperturbative renormalization for both quark and gluon matrix elements. We find that the contribution of the up, down, strange, and charm quarks to the proton intrinsic spin is 1/2 Sigma(q=u,d,s,c) Delta Sigma(q+) = 0.191(15) and to the total spin Sigma(q=u,d,s,c) Jq(+) = 0.285(45)(10). The gluon contribution to the spin is J(g) = 0.187(46)(10) yielding J = J(q) + J(g) = 0.473(71)(14) confirming the spin sum. The momentum fraction carried by quarks in the proton is found to be 0.618(60) and by gluons 0.427(92), the sum of which gives 1.045(118) confirming the momentum sum rule. All scale and scheme dependent quantities are given in the (MS) over bar scheme at 2 GeV.
引用
收藏
页数:28
相关论文
共 37 条
  • [21] Elastic nucleon-pion scattering amplitudes in the Δ channel at physical pion mass from lattice QCD
    Alexandrou, Constantia
    Bacchio, Simone
    Koutsou, Giannis
    Leontiou, Theodoros
    Paul, Srijit
    Petschlies, Marcus
    Pittler, Ferenc
    PHYSICAL REVIEW D, 2024, 109 (03)
  • [22] Nucleon Tomography and Generalized Parton Distribution at Physical Pion Mass from Lattice QCD
    Lin, Huey-Wen
    PHYSICAL REVIEW LETTERS, 2021, 127 (18)
  • [23] Quark contribution to the proton spin from 2+1+1-flavor lattice QCD
    Lin, Huey-Wen
    Gupta, Rajan
    Yoon, Boram
    Jang, Yong-Chull
    Bhattacharya, Tanmoy
    PHYSICAL REVIEW D, 2018, 98 (09)
  • [24] Nucleon helicity generalized parton distribution at physical pion mass from lattice QCD
    Lin, Huey-Wen
    PHYSICS LETTERS B, 2022, 824
  • [25] Flavor decomposition of the nucleon unpolarized, helicity, and transversity parton distribution functions from lattice QCD simulations
    Alexandrou, Constantia
    Constantinou, Martha
    Hadjiyiannakou, Kyriakos
    Jansen, Karl
    Manigrasso, Floriano
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [26] Heavy Quark Diffusion from 2+1 Flavor Lattice QCD with 320 MeV Pion Mass
    Altenkort, Luis
    Kaczmarek, Olaf
    Larsen, Rasmus
    Mukherjee, Swagato
    Petreczky, Peter
    Shu, Hai-Tao
    Stendebach, Simon
    PHYSICAL REVIEW LETTERS, 2023, 130 (23)
  • [27] Pion valence quark distribution at physical pion mass of N f =2+1+1 lattice QCD
    Holligan, Jack
    Lin, Huey-Wen
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2024, 51 (06)
  • [28] Modeling pion physics in the ε-regime of two-flavor QCD using strong coupling lattice QED
    Cecile, D. J.
    Chandrasekharan, Shailesh
    PHYSICAL REVIEW D, 2008, 77 (01)
  • [29] Nucleon Structure from 2+1 Flavor Domain Wall QCD at Nearly Physical Pion Mass
    Ohta, Shigemi
    T(R)OPICAL QCD 2010, 2011, 1354
  • [30] Isospin 0 and 2 two-pion scattering at physical pion mass using all-to-all propagators with periodic boundary conditions in lattice QCD
    Blum, Thomas
    Boyle, Peter A.
    Bruno, Mattia
    Hoying, Daniel
    Izubuchi, Taku
    Jin, Luchang
    Jung, Chulwoo
    Kelly, Christopher
    Lehner, Christoph
    Meyer, Aaron S.
    Soni, Amarjit
    Tomii, Masaaki
    PHYSICAL REVIEW D, 2023, 107 (09)