Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography

被引:11
|
作者
Xiao, Jing [1 ]
Song, Fuchuan [1 ]
Han, Kijeong [2 ]
Seo, Sang-Woo [1 ]
机构
[1] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
[2] Korea Aerosp Univ, Dept Elect Engn & Avion, Goyang City 412791, Gyeonggi Do, South Korea
基金
美国国家科学基金会;
关键词
SPECTROMETER; SILICON; SELECTIVITY; CHANNELS; SENSOR; MASKS;
D O I
10.1088/0960-1317/22/2/025006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An integrated optical filter array is demonstrated using simple gray-scale lithography and a subsequent reactive ion etching process. Gray-scale lithography allows three-dimensional structure patterning to form controllable cavity thickness in a Fabry-Perot resonance structure. This approach avoids repeated photolithography and etching processes in conventional filter array fabrications. The filter array is formed by single gray-scale lithography and does not require a repeated alignment process of each filter. The demonstrated filter array is fabricated with silicon dioxide (SiO2) as a cavity layer and dielectric mirrors of multilayered magnesium fluoride (MgF2) and zinc selenide (ZnSe). The smallest demonstrated filter size is 10 mu m which can be fitted into the size of current CMOS-based photodetectors. However, its ultimate size will be determined by the minimum resolution of gray-scale lithography. This will allow an optical filter array with high resolution and small size which can be directly integrated onto a detector array or CCD for miniaturized spectrometers.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] GRAY-SCALE GRANULOMETRIES COMPATIBLE WITH SPATIAL SCALINGS
    KRAUS, EJ
    HEIJMANS, HJAM
    DOUGHERTY, ER
    SIGNAL PROCESSING, 1993, 34 (01) : 1 - 17
  • [22] MEMS-based gray-scale lithography
    Waits, CM
    Ghodssi, R
    Ervin, MH
    Dubey, M
    2001 INTERNATIONAL SEMICONDUCTOR DEVICE RESEARCH SYMPOSIUM, PROCEEDINGS, 2001, : 182 - 185
  • [23] Top-Down Fabrication of Fully CMOS-Compatible Silicon Nanowire Arrays and Their Integration into CMOS Inverters on Plastic
    Lee, Myeongwon
    Jeon, Youngin
    Moon, Taeho
    Kim, Sangsig
    ACS NANO, 2011, 5 (04) : 2629 - 2636
  • [24] Progress in CMOS-Compatible Fabrication Process of Dielectric Metasurfaces
    Zhang C.
    Xiao S.
    Guangxue Xuebao/Acta Optica Sinica, 2023, 43 (08):
  • [25] Design, Fabrication, and Modeling of CMOS-Compatible Double Photodiode
    Sheng Xie
    Xuetao Luo
    Luhong Mao
    Haiou Li
    Transactions of Tianjin University, 2017, 23 (02) : 163 - 167
  • [26] Design, Fabrication, and Modeling of CMOS-Compatible Double Photodiode
    Xie S.
    Luo X.
    Mao L.
    Li H.
    Xie, Sheng (xie_sheng06@tju.edu.cn), 1600, Tianjin University (23): : 163 - 167
  • [27] Gray-scale lithography using mask-less exposure system
    Totsu, K
    Fujishiro, K
    Tanaka, S
    Esashi, M
    Transducers '05, Digest of Technical Papers, Vols 1 and 2, 2005, : 1441 - 1444
  • [28] Design and fabrication of a CMOS-compatible MHP gas sensor
    Li, Ying
    Yu, Jun
    Wu, Hao
    Tang, Zhenan
    AIP ADVANCES, 2014, 4 (03)
  • [29] Wafer-scale fabrication of CMOS-compatible, high aspect ratio encapsulated nanochannels
    Smith, Melissa Alyson
    Weaver, Isaac
    Rothschild, Mordechai
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (05):
  • [30] On-Demand CMOS-Compatible Fabrication of Ultrathin Self-Aligned SiC Nanowire Arrays
    Tabassum, Natasha
    Kotha, Mounika
    Kaushik, Vidya
    Ford, Brian
    Dey, Sonal
    Crawford, Edward
    Nikas, Vasileios
    Gallis, Spyros
    NANOMATERIALS, 2018, 8 (11):