Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography

被引:11
|
作者
Xiao, Jing [1 ]
Song, Fuchuan [1 ]
Han, Kijeong [2 ]
Seo, Sang-Woo [1 ]
机构
[1] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
[2] Korea Aerosp Univ, Dept Elect Engn & Avion, Goyang City 412791, Gyeonggi Do, South Korea
基金
美国国家科学基金会;
关键词
SPECTROMETER; SILICON; SELECTIVITY; CHANNELS; SENSOR; MASKS;
D O I
10.1088/0960-1317/22/2/025006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An integrated optical filter array is demonstrated using simple gray-scale lithography and a subsequent reactive ion etching process. Gray-scale lithography allows three-dimensional structure patterning to form controllable cavity thickness in a Fabry-Perot resonance structure. This approach avoids repeated photolithography and etching processes in conventional filter array fabrications. The filter array is formed by single gray-scale lithography and does not require a repeated alignment process of each filter. The demonstrated filter array is fabricated with silicon dioxide (SiO2) as a cavity layer and dielectric mirrors of multilayered magnesium fluoride (MgF2) and zinc selenide (ZnSe). The smallest demonstrated filter size is 10 mu m which can be fitted into the size of current CMOS-based photodetectors. However, its ultimate size will be determined by the minimum resolution of gray-scale lithography. This will allow an optical filter array with high resolution and small size which can be directly integrated onto a detector array or CCD for miniaturized spectrometers.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Design, fabrication and characterization of CMOS-compatible optical microswitches
    Li, J
    Kahrizi, M
    Landsberger, LA
    CCECE 2003: CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, PROCEEDINGS: TOWARD A CARING AND HUMANE TECHNOLOGY, 2003, : 319 - 322
  • [2] Fabrication of 3D surface structures using gray-scale lithography
    Stilson, Christopher
    Pal, Rajan
    Coutu, Ronald, Jr.
    MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY XIX, 2014, 8973
  • [3] Fabrication of three-dimensional microstructure using maskless gray-scale lithography
    Totsu, Kentaro
    Fujishiro, Kenta
    Tanaka, Shuji
    Esashi, Masayoshi
    SENSORS AND ACTUATORS A-PHYSICAL, 2006, 130 : 387 - 392
  • [4] Fast fabrication of polymer out-of-plane optical coupler by gray-scale lithography
    Summitt, Chris
    Wang, Sunglin
    Namnabat, Soha
    Johnson, Lee
    Milster, Tom
    Takashima, Yuzuru
    OPTICS EXPRESS, 2017, 25 (15): : 17960 - 17970
  • [5] Design and Operation of CMOS-Compatible Electron Pumps Fabricated With Optical Lithography
    Clapera, P.
    Klochan, J.
    Lavieville, R.
    Barraud, S.
    Hutin, L.
    Sanquer, M.
    Vinet, M.
    Cinins, A.
    Barinovs, G.
    Kashcheyevs, V.
    Jehl, X.
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (04) : 414 - 417
  • [6] Development of CMOS-Compatible Membrane Projection Lithography
    Burckel, D. Bruce
    Samora, Sally
    Wiwi, Mike
    Wendt, Joel R.
    METAMATERIALS: FUNDAMENTALS AND APPLICATIONS VI, 2013, 8806
  • [7] Fabrication of a curved microlens array using double gray-scale digital maskless lithography
    Luo, Ningning
    Zhang, Zhimin
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (03)
  • [8] Ordered arrays of ⟨100⟩-oriented silicon nanorods by CMOS-compatible block copolymer lithography
    Zschech, Danilo
    Kim, Dong Ha
    Milenin, Alexey P.
    Scholz, Roland
    Hillebrand, Reinald
    Hawker, Craig J.
    Russell, Thomas P.
    Steinhart, Martin
    Goesele, Ulrich
    NANO LETTERS, 2007, 7 (06) : 1516 - 1520
  • [9] Fabrication of biochip using gray-scale photolithography
    Bae, Young Min
    Transactions of the Korean Institute of Electrical Engineers, 2008, 57 (01): : 137 - 141
  • [10] A CMOS-Compatible Fabrication Approach for High-Performance Perovskite Photodetector Arrays
    Wu, Erfu
    Tsarev, Sergey
    Proniakova, Daria
    Liu, Xuqi
    Bachmann, Dominik
    Yakunin, Sergii
    Kovalenko, Maksym V.
    Shorubalko, Ivan
    ADVANCED OPTICAL MATERIALS, 2025, 13 (10):