Performance improvement in a proton exchange membrane fuel cell with an innovative flow field design

被引:10
|
作者
Huang, Zhenyu [1 ]
Xing, Lu [2 ]
Tu, Zhengkai [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
[2] Northumbria Univ, Mech & Construct Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
基金
中国国家自然科学基金;
关键词
energy efficiency ratio; flow field; oxygen and water distribution; proton exchange membrane fuel cell; NUMERICAL-ANALYSIS; BIPOLAR PLATE; CHANNEL; PEMFCS; MODEL; OPTIMIZATION; ENHANCEMENT; SIMULATION; TRANSPORT; STEADY;
D O I
10.1002/er.7597
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The flow field of the proton exchange membrane fuel cell (PEMFC) controls mass and water transfer; it significantly impacts the fuel cell's performance. It is critical to innovate the flow field design for optimizing the performance. This paper proposes a new-designed flow field (NDFF) patterned with the built-in blockage and trap-shape rib association. The novel design was analyzed numerically and experimentally. A three-dimensional isothermal numerical model was first established based on COMSOL software. This model demonstrated that the NDFF transformed the traditional diffusion mass transfer into the optimized diffusion and convection mass transfer combination. Compared with the conventional straight flow field, the effective mass transfer coefficient was considerably improved. Moreover, the new-designed structures enforced cyclical variation of local velocity and pressure, forming forced-convection, which was beneficial for water management. At 0.45A center dot cm(-2), the steady-state voltage and the initial dynamic response voltage were increased by 0.08 V and 0.16 V; power density was increased by 20.1%. The experimental results were collected to validate the enhanced performance of PEMFC with the NDFF. Energy efficiency ratio (EER) was proposed as an evaluation criterion; EER results suggested NDFF can improve the net output power. A new flow field patterned with built-in blockage and trap shape rib association Energy efficiency ratio, effective mass transfer coefficient used for evaluation Steady-state and dynamic performances are greatly improved at an increased Energy efficiency ratio
引用
下载
收藏
页码:6623 / 6636
页数:14
相关论文
共 50 条
  • [1] Performance Improvement of Proton Exchange Membrane Fuel Cell by Modified Flow Field Design
    Saminathan, Janaki
    Marappan, Muthukumar
    Palanisamy, Senthil Kumar Angappamudaliar
    Ramasamy, Sivabalakrishnan
    JOURNAL OF ENERGY ENGINEERING, 2023, 149 (05)
  • [2] Research on performance of proton exchange membrane fuel cell with an innovative flow field
    Cai, Yonghua
    Yue, Shiqin
    Wei, Fan
    Hu, Jianping
    Chen, Ben
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 50
  • [3] Performance of a proton exchange membrane fuel cell with a stepped flow field design
    Min, Chun-Hua
    JOURNAL OF POWER SOURCES, 2009, 186 (02) : 370 - 376
  • [4] Effect of flow field design on the performance of a proton exchange membrane fuel cell (PEMFC)
    Kim, Sunhoe
    Hong, Inkwon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2007, 13 (05) : 864 - 869
  • [5] Evaluation of flow field design effects on proton exchange membrane fuel cell performance
    Weng, Fang-Bor
    Dlamini, Mangaliso Menzi
    Hwang, Jenn-Jiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (39) : 14866 - 14884
  • [6] Flow Field Structure Optimization and Performance Improvement with Pentagon Baffle for Proton Exchange Membrane Fuel Cell
    Chen J.
    Zeng C.
    Zhou Y.
    Lan F.
    Liu Q.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (10): : 1862 - 1875
  • [7] A Streamline Dot Flow Field Design for Proton Exchange Membrane Fuel Cell
    Sun, Feng
    Su, Dandan
    Yin, Yujie
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [8] Performance investigation of proton exchange membrane fuel cell with intersectant flow field
    Wen Dong-hui
    Yin Lin-zhi
    Piao Zhong-yu
    Lu Cong-da
    Li Gang
    Leng Qiao-hui
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 121 : 775 - 787
  • [9] Design of a novel nautilus bionic flow field for proton exchange membrane fuel cell by analyzing performance
    Li, Nan
    Wang, Wanteng
    Xu, Ruiyang
    Zhang, Jinhui
    Xu, Hongpeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 200
  • [10] Numerical simulation of cell performance in proton exchange membrane fuel cells with contracted flow field design
    Weng, Wen-Chung
    Yan, Wei-Mon
    Li, Hung-Yi
    Wang, Xiao-Dong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (09) : B877 - B886