Design of a novel nautilus bionic flow field for proton exchange membrane fuel cell by analyzing performance

被引:31
|
作者
Li, Nan [1 ]
Wang, Wanteng [1 ]
Xu, Ruiyang [1 ]
Zhang, Jinhui [1 ]
Xu, Hongpeng [1 ]
机构
[1] Yanshan Univ, Sch Vehicle & Energy, Qinhuangdao 066004, Peoples R China
关键词
Proton exchange membrane fuel cell; Nautilus bionic channel; Flow channel design; Electrochemical; Numerical simulation; PEMFC; ENERGY; TRANSPORT; CATHODE;
D O I
10.1016/j.ijheatmasstransfer.2022.123517
中图分类号
O414.1 [热力学];
学科分类号
摘要
Bionic flow channels have wide applications in proton-exchange membrane fuel cells (PEMFCs), espe-cially at the cathode, significantly improving their performance. This study proposed a bionic flow chan-nel based on the internal structure of the nautilus. A three-dimensional (3D) single-phase isothermal CFD model was established for a multi-physical field numerical simulation. The air inlet was located in the centre of the channel, and the reactants from the flow channel in the centre passed through the arched flow channel to the surrounding annular flow channel. In this study, traditional serpentine, honeycomb -like, and nautilus bionic flow channels were investigated. The nautilus bionic flow channel was shown to have more uniform reactants, better water removal, lower concentration polarisation loss, and better power compared to the other two flow channels. Compared to the serpentine flow channel, the peak current density increased by 46.7%, and the peak power density increased by 21.53%. Compared with the honeycomb-like flow channel, the peak current density increased by 5.73%, and the power densities were similar. The nautilus bionic flow channel had better reactant uniformity, current density, and water re-moval compared to the honeycomb-like flow channel. In addition, this study investigated the superiority of the nautilus bionic flow channel over the serpentine flow channel under different cathode air inlet flow velocities and the effect of different numbers of annular flow channels on the nautilus bionic flow channel, with the results indicating that the performance of five annular flow channels was best.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Design and Analysis of Spider Bionic Flow Field for Proton Exchange Membrane Fuel Cell
    Yao, Jian
    Yan, Fayi
    Pei, Xuejian
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2023, 14 (01) : 38 - 50
  • [2] Performance of a proton exchange membrane fuel cell with a stepped flow field design
    Min, Chun-Hua
    JOURNAL OF POWER SOURCES, 2009, 186 (02) : 370 - 376
  • [3] Novel Design of Anode Flow Field in Proton Exchange Membrane Fuel Cell (PEMFC)
    Heng, Xun Zheng
    Wang, Peng Cheng
    An, Hui
    Liu, Gui Qin
    PROCEEDINGS OF THE 4TH IRC CONFERENCE ON SCIENCE, ENGINEERING AND TECHNOLOGY, IRC-SET 2018, 2019, : 375 - 387
  • [4] Performance Improvement of Proton Exchange Membrane Fuel Cell by Modified Flow Field Design
    Saminathan, Janaki
    Marappan, Muthukumar
    Palanisamy, Senthil Kumar Angappamudaliar
    Ramasamy, Sivabalakrishnan
    JOURNAL OF ENERGY ENGINEERING, 2023, 149 (05)
  • [5] Effect of flow field design on the performance of a proton exchange membrane fuel cell (PEMFC)
    Kim, Sunhoe
    Hong, Inkwon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2007, 13 (05) : 864 - 869
  • [6] Performance improvement in a proton exchange membrane fuel cell with an innovative flow field design
    Huang, Zhenyu
    Xing, Lu
    Tu, Zhengkai
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (05) : 6623 - 6636
  • [7] Evaluation of flow field design effects on proton exchange membrane fuel cell performance
    Weng, Fang-Bor
    Dlamini, Mangaliso Menzi
    Hwang, Jenn-Jiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (39) : 14866 - 14884
  • [8] Design and Modelling of 3D Bionic Cathode Flow Field for Proton Exchange Membrane Fuel Cell
    Xuan, Lingfeng
    Wang, Yancheng
    Mei, Deqing
    Lan, Jingwei
    ENERGIES, 2021, 14 (19)
  • [9] Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell
    Meng, Xiangchao
    Ren, Hong
    Hao, Jinkai
    Shao, Zhigang
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [10] A Streamline Dot Flow Field Design for Proton Exchange Membrane Fuel Cell
    Sun, Feng
    Su, Dandan
    Yin, Yujie
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023