Stability of isometric maps in the Heisenberg group

被引:0
|
作者
Arcozzi, Nicola [1 ]
Morbidelli, Daniele [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
关键词
Heisenberg group; subRiemannian geometry; biLipschitz maps;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove approximation results for biLipschitz maps in the Heisenberg group. Namely, we show that a biLipschitz map with biLipschitz constant close to one can be pointwise approximated, quantitatively in any fixed ball, by an isometry. This leads to an approximation in BMO norm for the map's Pansu derivative. We also prove that a global quasigeodesic can be approximated by a geodesic on any fixed segment.
引用
收藏
页码:101 / 141
页数:41
相关论文
共 50 条
  • [21] Deep Isometric Maps
    Pai, Gautam
    Bronstein, Alex
    Talmon, Ronen
    Kimmel, Ron
    IMAGE AND VISION COMPUTING, 2022, 123
  • [22] Equidimensional isometric maps
    Kirchheim, Bernd
    Spadaro, Emanuele
    Szekelyhidi, Laszlo, Jr.
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (04) : 761 - 798
  • [23] Isometric Euclidean submanifolds with isometric Gauss maps
    Dajczer, M.
    Jimenez, M. I.
    Vlachos, Th.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [24] SPHERICAL MEANS ON THE HEISENBERG GROUP: STABILITY OF A MAXIMAL FUNCTION ESTIMATE
    Anderson, Theresa C.
    Cladek, Laura
    Pramanik, Malabika
    Seeger, Andreas
    JOURNAL D ANALYSE MATHEMATIQUE, 2021, 145 (01): : 1 - 28
  • [25] Spherical means on the Heisenberg group: Stability of a maximal function estimate
    Theresa C. Anderson
    Laura Cladek
    Malabika Pramanik
    Andreas Seeger
    Journal d'Analyse Mathématique, 2021, 145 : 1 - 28
  • [26] LEARNING ISOMETRIC SEPARATION MAPS
    Vasiloglou, Nikolaos
    Gray, Alexander G.
    Anderson, David V.
    2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 293 - 298
  • [27] Dispersiveness, higher stability and controllability of linear control systems on the Heisenberg group
    Souza, Josiney A.
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024,
  • [28] Partially isometric immersions and free maps
    Giuseppina D’Ambra
    Roberto De Leo
    Andrea Loi
    Geometriae Dedicata, 2011, 151 : 79 - 95
  • [29] Approximately-isometric diffusion maps
    Salhov, Moshe
    Bermanis, Amit
    Wolf, Guy
    Averbuch, Amir
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 38 (03) : 399 - 419
  • [30] ISOMETRIC IMMERSIONS WITH CONGRUENT GAUSS MAPS
    MOORE, JD
    NORONHA, MH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (02) : 463 - 469