Solving the Bethe-Salpeter Equation in Euclidean Space

被引:14
|
作者
Dorkin, S. M. [1 ]
Kaptari, L. P. [1 ,2 ,3 ]
degli Atti, C. Ciofi [2 ,3 ]
Kaempfer, B. [4 ]
机构
[1] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[2] Univ Perugia, Dept Phys, I-06123 Perugia, Italy
[3] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[4] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany
关键词
DEUTERON BACKWARD SCATTERING; LIGHT-FRONT DYNAMICS; ONE-BOSON-EXCHANGE; FEW-BODY SYSTEMS; FAST PROTON PAIR; FORM DYNAMICS; INTERMEDIATE ENERGIES; ELASTIC-SCATTERING; FORMALISM; OBSERVABLES;
D O I
10.1007/s00601-010-0101-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Different approaches to solve the spinor-spinor Bethe-Salpeter (BS) equation in Euclidean space are considered. It is argued that the complete set of Dirac matrices is the most appropriate basis to define the partial amplitudes and to solve numerically the resulting system of equations with realistic interaction kernels. Other representations can be obtained by performing proper unitary transformations. A generalization of the iteration method for finding the energy spectrum of the BS equation is discussed and examples of concrete calculations are presented. Comparison of relativistic calculations with available experimental data and with corresponding non relativistic results together with an analysis of the role of Lorentz boost effects and relativistic corrections are presented. A novel method related to the use of hyperspherical harmonics is considered for a representation of the vertex functions suitable for numerical calculations.
引用
收藏
页码:233 / 246
页数:14
相关论文
共 50 条
  • [41] Solving the Bethe-Salpeter equation in real frequencies at finite temperature
    Tupitsyn, I. S.
    V. Prokof'ev, N.
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [42] The Bethe-Salpeter equation with fermions
    G. V. Efimov
    Few-Body Systems, 2007, 41 : 157 - 184
  • [43] SPECTRUM OF A BETHE-SALPETER EQUATION
    CUTKOSKY, RE
    WICK, GC
    PHYSICAL REVIEW, 1956, 101 (06): : 1830 - 1831
  • [44] EIGENVALUES OF BETHE-SALPETER EQUATION
    MUNAKATA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1978, 60 (02): : 536 - 547
  • [45] Unitarity and the Bethe-Salpeter equation
    Lahiff, AD
    Afnan, IR
    PHYSICAL REVIEW C, 2002, 66 (04):
  • [46] Solving the inhomogeneous Bethe-Salpeter equation in Minkowski space: the zero-energy limit
    Frederico, Tobias
    Salme, Giovanni
    Viviani, Michele
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (08):
  • [47] The Bethe-Salpeter approach to bound states: from Euclidean to Minkowski space
    Castro, A.
    Ydrefors, E.
    de Paula, W.
    Frederico, T.
    de Alvarenga Nogueira, J. H.
    Maris, P.
    XLI BRAZILIAN MEETING ON NUCLEAR PHYSICS (RTFNB), 2019, 1291
  • [48] Euclidean to Minkowski Bethe-Salpeter amplitude and observables
    Carbonell, J.
    Frederico, T.
    Karmanov, V. A.
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (01):
  • [49] On solving nonhomogeneous Bethe-Salpeter equations
    S. S. Semikh
    S. M. Dorkin
    M. Beyer
    L. P. Kaptari
    Physics of Atomic Nuclei, 2005, 68 : 2022 - 2033
  • [50] On solving nonhomogeneous Bethe-Salpeter equations
    Semikh, SS
    Dorkin, SM
    Beyer, M
    Kaptari, LP
    PHYSICS OF ATOMIC NUCLEI, 2005, 68 (12) : 2022 - 2033