Directional regularity and metric regularity

被引:22
|
作者
Arutyunov, Aram V.
Avakov, Evgeniy R.
Izmailov, Alexey F.
机构
[1] Patrice Lumumba Peoples Friendship Univ, Moscow 117806, Russia
[2] Russian Acad Sci, Inst Control Problems, Moscow 117806, Russia
[3] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Dept Operat Res, Moscow 119992, Russia
[4] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119992, Russia
关键词
metric regularity; Robinson's constraint qualification; directional regularity; directional metric regularity; feasible arc; sensitivity;
D O I
10.1137/060651616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For general constraint systems in Banach spaces, we present the directional stability theorem based on the appropriate generalization of the directional regularity condition, suggested earlier in [A. V. Arutyunov and A. F. Izmailov, Math. Oper. Res., 31 (2006), pp. 526-543]. This theorem contains Robinson's stability theorem but does not reduce to it. Furthermore, we develop the related concept of directional metric regularity which is stable subject to small Lipschitzian perturbations of the constraint mapping, and which is equivalent to directional regularity for sufficiently smooth mappings. Finally, we discuss some applications in sensitivity theory.
引用
收藏
页码:810 / 833
页数:24
相关论文
共 50 条
  • [41] Metric regularity and systems of generalized equations
    Dmitruk, Andrei V.
    Kruger, Alexander Y.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 864 - 873
  • [42] Conditions of regularity in cone metric spaces
    Alimohammady, M.
    Balooee, J.
    Radojevic, S.
    Rakocevic, V.
    Roohi, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) : 6359 - 6363
  • [43] Estimation of the Modulus of Holder Metric Regularity
    Xu, Wending
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2022, 56 (02) : 138 - 143
  • [44] METRIC REGULARITY OF NEWTON'S ITERATION
    Aragon Artacho, F. J.
    Dontchev, A. L.
    Gaydu, M.
    Geoffroy, M. H.
    Veliov, V. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (02) : 339 - 362
  • [45] A unified theory for metric regularity of multifunctions
    Aze, D.
    JOURNAL OF CONVEX ANALYSIS, 2006, 13 (02) : 225 - 252
  • [46] SEPARABLE REDUCTION OF LOCAL METRIC REGULARITY
    Fabian, M.
    Ioffe, A. D.
    Revalski, J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (12) : 5157 - 5167
  • [47] Nonlinear metric regularity on fixed sets
    Nguyen Huu Tron
    Dao Ngoc Han
    Huynh Van Ngai
    OPTIMIZATION, 2023, 72 (06) : 1515 - 1548
  • [48] Characterization of metric regularity of sub differentials
    Aragon Artacho, Francisco J.
    Geoffroy, Michel H.
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 365 - 380
  • [49] On a nonlocal metric regularity of nonlinear operators
    Dmitruk, AV
    CONTROL AND CYBERNETICS, 2005, 34 (03): : 723 - 746
  • [50] On metric regularity of Reed–Muller codes
    Alexey Oblaukhov
    Designs, Codes and Cryptography, 2021, 89 : 167 - 197