An improved deep convolutional neural network by using hybrid optimization algorithms to detect and classify brain tumor using augmented MRI images

被引:13
|
作者
Qader, Shko M. [1 ,2 ]
Hassan, Bryar A. [3 ]
Rashid, Tarik A. [4 ]
机构
[1] Univ Coll Goizha, Informat Technol Dept, Sulaimani 46001, Iraq
[2] Sulaimani Polytech Univ, Comp Sci Inst, Dept Informat Technol, Sulaimani 46001, Iraq
[3] Kurdistan Inst Strateg Studies & Sci Res, Dept Informat Technol, Sulaimani, Iraq
[4] Univ Kurdistan Hewler, Comp Sci & Engn Dept, Erbil, Iraq
关键词
Brain tumor; Medical MRI imaging; Deep convolutional neural network; Harris hawks optimization; Grey wolf optimization; Medical diagnosis; CLASSIFICATION; FUSION;
D O I
10.1007/s11042-022-13260-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automated brain tumor detection is becoming a highly considerable medical diagnosis research. In recent medical diagnoses, detection and classification are highly considered to employ machine learning and deep learning techniques. Nevertheless, the accuracy and performance of current models need to be improved for suitable treatments. In this paper, an improvement in deep convolutional learning is ensured by adopting enhanced optimization algorithms, Thus, Deep Convolutional Neural Network (DCNN) based on improved Harris Hawks Optimization (HHO), called G-HHO has been considered. This hybridization features Grey Wolf Optimization (GWO) and HHO to give better results, limiting the convergence rate and enhancing performance. Moreover, Otsu thresholding is adopted to segment the tumor portion that emphasizes brain tumor detection. Experimental studies are conducted to validate the performance of the suggested method on a total number of 2073 augmented MRI images. The technique's performance was ensured by comparing it with the nine existing algorithms on huge augmented MRI images in terms of accuracy, precision, recall, f-measure, execution time, and memory usage. The performance comparison shows that the DCNN-G-HHO is much more successful than existing methods, especially on a scoring accuracy of 97%. Additionally, the statistical performance analysis indicates that the suggested approach is faster and utilizes less memory at identifying and categorizing brain tumor cancers on the MR images. The implementation of this validation is conducted on the Python platform. The relevant codes for the proposed approach are available at: https://github.com/bryarahassan/DCNN-G-HHO.
引用
下载
收藏
页码:44059 / 44086
页数:28
相关论文
共 50 条
  • [21] Detection and Classification of Brain Tumors From MRI Images Using a Deep Convolutional Neural Network Approach
    Menaouer, Brahami
    El-Houda, Kebir Nour
    Zoulikha, Dermane
    Mohammed, Sabri
    Matta, Nada
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2022, 10 (01)
  • [22] Real-time MRI lungs images revealing using Hybrid feedforward Deep Neural Network and Convolutional Neural Network
    Karthick, M.
    Samuel, Dinesh Jackson
    Prakash, B.
    Sathyaprakash, P.
    Daruvuri, Nandhini
    Ali, Mohammed Hasan
    Aiswarya, R. S.
    INTELLIGENT DATA ANALYSIS, 2023, 27 : S95 - S114
  • [23] An Efficient Deep Convolutional Neural Network Approach for the Detection and Classification of Brain Tumor in MRI Images
    Haq, Ejaz Ul
    Huang, Jianjun
    Li, Kang
    Haq, Hafeez Ul
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 55 - 56
  • [24] Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images
    Chelghoum, Rayene
    Ikhlef, Ameur
    Hameurlaine, Amina
    Jacquir, Sabir
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2020, PT I, 2020, 583 : 189 - 200
  • [25] Accurate brain tumor detection using deep convolutional neural network
    Khan, Md Saikat Islam
    Rahman, Anichur
    Debnath, Tanoy
    Karim, Md Razaul
    Nasir, Mostofa Kamal
    Band, Shahab S.
    Mosavi, Amir
    Dehzangi, Iman
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 4733 - 4745
  • [26] Classification of brain tumours in MRI images using convolutional neural network through Cat Swarm Optimization
    Deepak, V. K.
    Sarath, R.
    EXPERT SYSTEMS, 2022, 39 (09)
  • [27] Brain Tumor Segmentation using Cascaded Deep Convolutional Neural Network
    Hussain, Saddam
    Anwar, Syed Muhammad
    Majid, Muhammad
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1998 - 2001
  • [28] Segmentation of MRI Brain Tumor Image using Optimization based Deep Convolutional Neural networks (DCNN)
    Mishra, Pradipta Kumar
    Satapathy, Suresh Chandra
    Rout, Minakhi
    OPEN COMPUTER SCIENCE, 2021, 11 (01): : 380 - 390
  • [29] Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network
    Badza, Milica M.
    Barjaktarovic, Marko C.
    APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [30] Classification of Tumor in Brain MR Images Using Deep Convolutional Neural Network and Global Average Pooling
    Malla, Prince Priya
    Sahu, Sudhakar
    Alutaibi, Ahmed I.
    PROCESSES, 2023, 11 (03)