Understanding the Z-scheme heterojunction of BiVO4/PANI for photoelectrochemical nitrogen reduction

被引:41
|
作者
Bai, Yajie [1 ]
Bai, Hongye [1 ]
Fang, Zhenyuan [2 ]
Li, Xia [1 ]
Fan, Weiqiang [1 ]
Shi, Weidong [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Beihang Univ, Sch Chem, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOCATALYTIC HYDROGEN EVOLUTION; OXYGEN VACANCIES; N-2; NH3;
D O I
10.1039/d1cc03687d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on the idea that a heterojunction can significantly promote photoelectrochemical (PEC) efficiency, BiVO<INF>4</INF>/PANI (polyaniline), as a Z-scheme heterojunction, was designed in this work. BiVO<INF>4</INF>/PANI achieved a desirable NH<INF>3</INF> yield rate (r<INF>NH<INF>3</INF></INF> = 0.93 mu g h-1 cm-2) and faradaic efficiency (FE = 26.43%). This study presents novel insight into PEC NRR research, and it could be extended to the modification of other catalysts for boosting PEC N<INF>2</INF> reduction reaction performance.
引用
收藏
页码:10568 / 10571
页数:4
相关论文
共 50 条
  • [41] Fabrication of a coated BiVO4@LDHs Z-scheme heterojunction and photocatalytic degradation of norfloxacin
    Zhang, Lianyang
    Meng, Yue
    Dai, Tiantian
    Yao, Yiyang
    Shen, Hui
    Xie, Bo
    Ni, Zheming
    Xia, Shengjie
    APPLIED CLAY SCIENCE, 2022, 219
  • [42] The Effect of the Morphology of BiVO4 on Z-scheme Photocatalyst of ZnIn2S4/RGO/BiVO4 for Hydrogen Generation Under Visible Light
    Fan, Yingying
    Zhong, Jian
    Yang, Ruijie
    Zhu, Rongshu
    Tian, Fei
    Hu, Longjun
    Chen, Qianqian
    CHEMISTRYSELECT, 2019, 4 (33): : 9595 - 9599
  • [43] Photochemically Etching BiVO4 to Construct Asymmetric Heterojunction of BiVO4/BiOx Showing Efficient Photoelectrochemical Water Splitting
    Chen, Xiangtao
    Zhen, Chao
    Li, Na
    Jia, Nan
    Xu, Xiaoxiang
    Wang, Lianzhou
    Liu, Gang
    SMALL METHODS, 2023, 7 (03)
  • [44] Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity
    Shi, Huilong
    Li, Chunhu
    Wang, Liang
    Wang, Wentai
    Meng, Xiangchao
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 424
  • [45] Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity
    Shi, Huilong
    Li, Chunhu
    Wang, Liang
    Wang, Wentai
    Meng, Xiangchao
    Journal of Hazardous Materials, 2022, 424
  • [46] Photocatalytic reduction of nitrate pollutants by novel Z-scheme ZnSe/BiVO4 heterostructures with high N2 selectivity
    Shi, Huilong
    Li, Chunhu
    Wang, Liang
    Wang, Wentai
    Bian, Junjie
    Meng, Xiangchao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 300
  • [47] Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst
    Yang Yi
    Wang Shuang
    Wang Wendan
    Chen Limiao
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2024, 40 (05) : 895 - 906
  • [48] Development of Z-scheme BiVO4/g-C3N4/rGO heterojunction nanocomposite for enhanced photocatalytic degradation and antibacterial activity
    Akechatree, Nicharee
    Rajendran, Ranjith
    Rojviroon, Thammasak
    Arumugam, Priyadharsan
    Vasudevan, Vasanthakumar
    Sirivithayapakorn, Sanya
    Dhayalan, Arul
    Wongpipun, Pongsakorn
    Phetyim, Natacha
    Rojviroon, Orawan
    MATERIALS RESEARCH BULLETIN, 2025, 181
  • [49] Unbiased Photoelectrochemical Water Splitting in Z-Scheme Device Using W/Mo-Doped BiVO4 and ZnxCd1-xSe
    Park, Hyun S.
    Lee, Heung Chan
    Leonard, Kevin C.
    Liu, Guanjie
    Bard, Allen J.
    CHEMPHYSCHEM, 2013, 14 (10) : 2277 - 2287
  • [50] Direct Z-scheme heterojunction of BiVO4 microsphere/g-C3N4 nanosheets for the efficient photocatalytic degradation of Rhodamine B
    Wang, Zhentao
    Iqbal, Waheed
    Wang, Jingjing
    Chang, Ninghui
    Qin, Chuanguang
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (40) : 18659 - 18670