Exploring geographic hotspots using topological data analysis

被引:3
|
作者
Zhang, Rui [1 ]
Lukasczyk, Jonas [2 ]
Wang, Feng [3 ]
Ebert, David [4 ]
Shakarian, Paulo [1 ]
Mack, Elizabeth A. [5 ]
Maciejewski, Ross [1 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA
[2] Tech Univ Kaiserslautern, Dept Comp Sci, Kaiserslautern, Germany
[3] Airbnb Inc, San Francisco, CA USA
[4] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
[5] Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA
关键词
KERNEL DENSITY-ESTIMATION; VISUAL ANALYTICS; MORSE COMPLEXES; TIME; VISUALIZATION; PERFORMANCE; FRAMEWORK; LEVEL; WEB;
D O I
10.1111/tgis.12816
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
This article describes a scalar field topology (SFT)-based methodology for the interactive characterization and analysis of hotspots for density fields defined on a regular grid. In contrast to the common approach of simply identifying hotspots as areas that exceed a chosen density threshold, SFT provides various data abstractions-such as the merge tree and the Morse complex-to characterize hotspots and their boundaries at multiple scales. Moreover, SFT enables the ranking of hotspots based on analyst-defined importance measures, which also makes it possible to explore hotspots using a level-of-detail approach. We present a visual analytics system to support analysts in hotspot analysis and abstraction using SFT, and we demonstrate the merit of the proposed SFT-based methodology on two crime datasets.
引用
下载
收藏
页码:3188 / 3209
页数:22
相关论文
共 50 条
  • [31] Analysis of fibrin networks using topological data analysis - a feasibility study
    Berger, Martin
    Hell, Tobias
    Tobiasch, Anna
    Martini, Judith
    Lindner, Andrea
    Tauber, Helmuth
    Bachler, Mirjam
    Hermann, Martin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] Towards Analysis of Multivariate Time Series Using Topological Data Analysis
    Zheng, Jingyi
    Feng, Ziqin
    Ekstrom, Arne D.
    MATHEMATICS, 2024, 12 (11)
  • [33] Spatiotemporal analysis and hotspots detection of COVID-19 using geographic information system (March and April, 2020)
    Mohsen Shariati
    Tahoora Mesgari
    Mahboobeh Kasraee
    Mahsa Jahangiri-rad
    Journal of Environmental Health Science and Engineering, 2020, 18 : 1499 - 1507
  • [34] Spatiotemporal analysis and hotspots detection of COVID-19 using geographic information system (March and April, 2020)
    Shariati, Mohsen
    Mesgari, Tahoora
    Kasraee, Mahboobeh
    Jahangiri-rad, Mahsa
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2020, 18 (02) : 1499 - 1507
  • [35] EXPLORING BRAIN TRANSCRIPTOMIC PATTERNS: A TOPOLOGICAL ANALYSIS USING SPATIAL EXPRESSION NETWORKS
    Kuncheva, Zhana
    Krishnan, Michelle L.
    Montana, Giovanni
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 70 - 81
  • [36] A Study on Thai Internet's Clickstream Data Using Topological Data Analysis
    Tantisuwankul, Jirateep
    Manaskasemsak, Bundit
    Rungsawang, Arnon
    INFORMATION SCIENCE AND APPLICATIONS, 2020, 621 : 589 - 599
  • [37] ACTION CLASSIFICATION FROM MOTION CAPTURE DATA USING TOPOLOGICAL DATA ANALYSIS
    Dirafzoon, Alireza
    Lokare, Namita
    Lobaton, Edgar
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 1260 - 1264
  • [38] A framework using topological pathways for deeper analysis of transcriptome data
    Zhao, Yue
    Piekos, Stephanie
    Hoang, Tham H.
    Shin, Dong-Guk
    BMC GENOMICS, 2020, 21 (Suppl 1)
  • [39] Fast Estimation of Recombination Rates Using Topological Data Analysis
    Humphreys, Devon P.
    McGuirl, Melissa R.
    Miyagi, Michael
    Blumberg, Andrew J.
    GENETICS, 2019, 211 (04) : 1191 - 1204
  • [40] On the topological modeling and analysis of industrial process data using the SOM
    Corona, Francesco
    Mulas, Michela
    Baratti, Roberto
    Romagnoli, Jose A.
    COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (12) : 2022 - 2032