Exploring geographic hotspots using topological data analysis

被引:3
|
作者
Zhang, Rui [1 ]
Lukasczyk, Jonas [2 ]
Wang, Feng [3 ]
Ebert, David [4 ]
Shakarian, Paulo [1 ]
Mack, Elizabeth A. [5 ]
Maciejewski, Ross [1 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA
[2] Tech Univ Kaiserslautern, Dept Comp Sci, Kaiserslautern, Germany
[3] Airbnb Inc, San Francisco, CA USA
[4] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
[5] Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA
关键词
KERNEL DENSITY-ESTIMATION; VISUAL ANALYTICS; MORSE COMPLEXES; TIME; VISUALIZATION; PERFORMANCE; FRAMEWORK; LEVEL; WEB;
D O I
10.1111/tgis.12816
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
This article describes a scalar field topology (SFT)-based methodology for the interactive characterization and analysis of hotspots for density fields defined on a regular grid. In contrast to the common approach of simply identifying hotspots as areas that exceed a chosen density threshold, SFT provides various data abstractions-such as the merge tree and the Morse complex-to characterize hotspots and their boundaries at multiple scales. Moreover, SFT enables the ranking of hotspots based on analyst-defined importance measures, which also makes it possible to explore hotspots using a level-of-detail approach. We present a visual analytics system to support analysts in hotspot analysis and abstraction using SFT, and we demonstrate the merit of the proposed SFT-based methodology on two crime datasets.
引用
收藏
页码:3188 / 3209
页数:22
相关论文
共 50 条
  • [1] Exploring hyperspectral imaging data sets with topological data analysis
    Duponchel, Ludovic
    [J]. ANALYTICA CHIMICA ACTA, 2018, 1000 : 123 - 131
  • [2] EXPLORING PERSISTENT LOCAL HOMOLOGY IN TOPOLOGICAL DATA ANALYSIS
    Fasy, Brittany Terese
    Wang, Bei
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6430 - 6434
  • [3] Exploring Contemporary Calligraphic Creation and Aesthetic Characteristics Using Topological Data Analysis Methods
    Shen M.
    [J]. Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [4] Predicting hotspots of unsheltered homelessness using geospatial administrative data and volunteered geographic information
    Chien, Jessie
    Henwood, Benjamin F.
    Clair, Patricia St.
    Kwack, Stephanie
    Kuhn, Randall
    [J]. HEALTH & PLACE, 2024, 88
  • [5] Exploring data with topological tools
    Zitnik, Marinka
    [J]. XRDS: Crossroads, 2014, 20 (04): : 65 - 66
  • [6] Exploring the use of topological data analysis to automatically detect data quality faults
    Tudoreanu, M. Eduard
    [J]. FRONTIERS IN BIG DATA, 2022, 5
  • [7] Unsupervised learning of topological phase diagram using topological data analysis
    Park, Sungjoon
    Hwang, Yoonseok
    Yang, Bohm-Jung
    [J]. PHYSICAL REVIEW B, 2022, 105 (19)
  • [8] Mining Social Media Data Using Topological Data Analysis
    Almgren, Khaled
    Kim, Minkyu
    Lee, Jeongkyu
    [J]. 2017 IEEE 18TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IEEE IRI 2017), 2017, : 144 - 153
  • [9] Detecting Hotspots in Geographic Networks
    Buchin, Kevin
    Cabello, Sergio
    Gudmundsson, Joachim
    Loffler, Maarten
    Luo, Jun
    Rote, Guenther
    Silveira, Rodrigo I.
    Speckmann, Bettina
    Wolle, Thomas
    [J]. ADVANCES IN GISCIENCE, 2009, : 217 - 231
  • [10] Ethereum Price Prediction using Topological Data Analysis
    Hafez, Samia M.
    ElNainay, Mustafa
    Abougabal, Mohamed
    Kosba, Ahmed
    [J]. 2022 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2022, : 146 - 153