On relaxed filtered Krylov subspace method for non-symmetric eigenvalue problems

被引:0
|
作者
Miao, Cun-Qiang [1 ]
Wu, Wen-Ting [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalue; Relaxed filtered Krylov subspace; Chebyshev polynomial; Non-symmetric matrix; DAVIDSON METHOD; COMPUTING EIGENPAIRS; CHEBYSHEV; ALGORITHM; ITERATION; EIGENSOLVER;
D O I
10.1016/j.cam.2021.113698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by introducing a class of relaxed filtered Krylov subspaces, we propose the relaxed filtered Krylov subspace method for computing the eigenvalues with the largest real parts and the corresponding eigenvectors of non-symmetric matrices. As by-products, the generalizations of the filtered Krylov subspace method and the Chebyshev-Davidson method for solving non-symmetric eigenvalue problems are also presented. We give the convergence analysis of the complex Chebyshev polynomial, which plays a significant role in the polynomial acceleration technique. In addition, numerical experiments are carried out to show the robustness of the relaxed filtered Krylov subspace method and its great superiority over some state-of-the-art iteration methods. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Convergence estimates for the generalized Davidson method for symmetric eigenvalue problems II: The subspace acceleration
    Ovtchinnikov, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) : 272 - 286
  • [32] An approximate method for the standard interval eigenvalue problem of real non-symmetric interval matrices
    Qiu, ZP
    Müller, PC
    Frommer, A
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (04): : 239 - 251
  • [33] Broyden method for inverse non-symmetric Sturm-Liouville problems
    Boeckmann, Christine
    Kammanee, Athassawat
    BIT NUMERICAL MATHEMATICS, 2011, 51 (03) : 513 - 528
  • [34] Broyden method for inverse non-symmetric Sturm-Liouville problems
    Christine Böckmann
    Athassawat Kammanee
    BIT Numerical Mathematics, 2011, 51 : 513 - 528
  • [35] Multiplicity of solutions for a class of non-symmetric eigenvalue hemivariational inequalities
    Ciulcu, C
    Motreanu, D
    Radulescu, V
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (09) : 801 - 814
  • [36] Robust parallel eigenvector computation for the non-symmetric eigenvalue problem
    Schwarz, Angelika
    Mikkelsen, Carl Christian Kjelgaard
    Karlsson, Lars
    PARALLEL COMPUTING, 2020, 100
  • [37] A PARALLEL AUGMENTED SUBSPACE METHOD FOR EIGENVALUE PROBLEMS
    Xu, Fei
    Xie, Hehu
    Zhang, Ning
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05): : A2655 - A2677
  • [38] ON SYMMETRIC AND NON-SYMMETRIC CONTACT PROBLEMS OF THE THEORY OF ELASTICITY.
    Aleksandrov, V.M.
    Smetanin, B.I.
    1600, (49):
  • [39] Finite element algorithm for non-symmetric problems
    Laouafa, F
    Royis, P
    NUMERICAL MODELS IN GEOMECHANICS - NUMOG VII, 1999, : 141 - 146
  • [40] Some symmetric boundary value problems and non-symmetric solutions
    Arioli, Gianni
    Koch, Hans
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (02) : 796 - 816