Pulsed current gradient power supply for microcoil magnetic resonance Imaging

被引:5
|
作者
Seeber, DA
Hoftiezer, JH
Pennington, CH
机构
[1] IGC Med Advances Inc, Milwaukee, WI 53226 USA
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
来源
CONCEPTS IN MAGNETIC RESONANCE | 2002年 / 15卷 / 03期
关键词
microcoils; magnetic resonance imaging; gradient power supply;
D O I
10.1002/cmr.10038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetic resonance imaging (MRI) microscopy requires very strong gradients (>10 T/m) that can be rapidly switched between positive and negative gradient fields. A gradient power supply is presented that is capable of pulsing a custom built triaxial microcoil gradient system to an excess of 15 T/m (and as high as 50 T/m), representing pulsed currents in excess of 150 A into loads of similar to200 mOmega (gradient coil plus cables). The gradient power supply is switchable (from positive to negative gradient fields) within a time of similar to10 Vs. An H-bridge design, consisting of four metal-oxide semiconductor field-effect transistors (MOSFETs), is used for changing both the current and magnetic field gradient directions. In series with the H bridge is an additional MOSFET that is optimized to be a voltage-controlled (adjustable) resistor to send the current through the gradient coils. Because MOSFETS require special driving circuits to overcome parasitic capacitances, the MOSFET fundamental design parameters are also presented to complete the circuit schematics. The gradient power supply presented allows for the high gradient fields required for microcoil MRI of small samples. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 50 条
  • [21] Pulsed magnetic field gradient on a tip for nanoscale imaging of spins
    Schein-Lubomirsky, Leora
    Mazor, Yarden
    Stoehr, Rainer
    Denisenko, Andrej
    Finkler, Amit
    COMMUNICATIONS PHYSICS, 2025, 8 (01):
  • [22] Gradient Moment Compensated Magnetic Resonance Spectroscopic Imaging
    Kim, Dong-Hyun
    Gu, Meng
    Spielman, Daniel M.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (02) : 457 - 461
  • [23] Magnetic resonance imaging of ultrasound fields: Gradient characteristics
    Plewes, DB
    Silver, S
    Starkoski, B
    Walker, CL
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2000, 11 (04) : 452 - 457
  • [24] Unshielded Gradient Coils Design For Magnetic Resonance Imaging
    Hidalgo, S. S.
    Gadzinski, C.
    Rutt, B.
    MEDICAL PHYSICS, 2012, 1494 : 54 - 57
  • [25] Optimization of biplanar gradient coils for magnetic resonance imaging
    Tomasi, D
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (1A) : 23 - 27
  • [26] Accurate Measurement of Magnetic Resonance Imaging Gradient Characteristics
    Liu, Hui
    Matson, Gerald B.
    MATERIALS, 2014, 7 (01): : 1 - 15
  • [27] Digital controlled gradient amplifier for magnetic resonance imaging
    Li, Siqi
    Jiang, Xiaohua
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2010, 30 (27): : 83 - 89
  • [28] DESIGN OF GRADIENT COILS FOR MAGNETIC-RESONANCE-IMAGING
    ADAMIAK, K
    RUTT, BK
    DABROWSKI, WJ
    IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (05) : 2403 - 2405
  • [29] Magnetic resonance imaging with gradient sound respiration guide
    Kobayashi, Naoharu
    PLOS ONE, 2021, 16 (07):
  • [30] Exciting power supply characteristics for pulsed eddy current thermography
    Tang B.
    Fang X.
    Hou D.
    Ye S.
    Ye, Shuliang (itmt_paper@126.com), 2018, Science Press (39): : 208 - 215