Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes

被引:32
|
作者
Yamamoto, Naoto [1 ]
Yamamoto, Masahiro
Kuwahara, Makoto
Sakai, Ryosuke
Morino, Takanori
Tamagaki, Kuniaki
Mano, Atsushi
Utsu, Akira
Okumi, Shouji
Nakanishi, Tsutomu
Kuriki, Masao
Bo, Chen
Ujihara, Toru
Takeda, Yoshikazu
机构
[1] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan
[2] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan
[3] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648602, Japan
基金
日本学术振兴会;
关键词
D O I
10.1063/1.2756376
中图分类号
O59 [应用物理学];
学科分类号
摘要
Extremely low emittance electron beams are required for next generation accelerators. GaAs semiconductor photocathodes with negative electron affinity (NEA) surfaces have an intrinsic advantage for generating such low emittance beams and the thermal emittance as low as 0.1 pi mm mrad is expected in ideal case. The thermal emittance of photoelectrons was measured for two different NEA photocathodes: a bulk-GaAs photocathode and a GaAs-GaAsP superlattice strained photocathode. The normalized root-mean-sqare emittances for the beam radius of 1.0 mm were as low as 0.20-0.29 +/- 0.02 and 0.15 +/- 0.02 pi mm mrad, respectively. A comparison of these results shows that the superlattice photocathode minimizes the thermal emittance for photon excitation energies higher than the band gap energy.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Recent tests of negative electron affinity photocathodes as source for electron lithography and microscopy
    Arcuni, P
    Presley, S
    Aebi, V
    Spicer, WE
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (06): : 2585 - 2590
  • [22] ELECTRON-BEAM GENERATION BASED ON NEGATIVE ELECTRON-AFFINITY PHOTOCATHODES
    SANFORD, CA
    MACDONALD, NC
    INTEGRATED CIRCUIT METROLOGY, INSPECTION, AND PROCESS CONTROL III, 1989, 1087 : 30 - 35
  • [23] Emittance measurements of electron beams from diamond field emitter arrays
    Jarvis, Jonathan D.
    Choi, Bo K.
    Hmelo, Anthony B.
    Ivanov, Borislav
    Brau, Charles A.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (04):
  • [24] Electron beams produced by innovative photocathodes based on nanodiamond layers
    Velardi, L.
    Turco, V
    Monteduro, L.
    Cicala, G.
    Valentini, A.
    Nassisi, V
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2019, 22 (09):
  • [25] Geometric and electromagnetic characterization of electron beams produced by nanodiamond photocathodes
    Velardi, L.
    Quarta, G.
    Calcagnile, L.
    Nassisi, V.
    Cicala, G.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (04):
  • [26] Intrinsic Emittance Reduction of an Electron Beam from Metal Photocathodes
    Hauri, C. P.
    Ganter, R.
    Le Pimpec, F.
    Trisorio, A.
    Ruchert, C.
    Braun, H. H.
    PHYSICAL REVIEW LETTERS, 2010, 104 (23)
  • [27] Revision of quantum efficiency formula for negative electron affinity photocathodes
    Du Xiao-Qing
    Chang Ben-Kang
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8643 - 8650
  • [28] Gradient-doping negative electron affinity GaAs photocathodes
    Zou, JJ
    Chang, BK
    OPTICAL ENGINEERING, 2006, 45 (05)
  • [29] Negative electron affinity GaAs wire-array photocathodes
    Zou, Jijun
    Ge, Xiaowan
    Zhang, Yijun
    Deng, Wenjuan
    Zhu, Zhifu
    Wang, Weilu
    Peng, Xincun
    Chen, Zhaoping
    Chang, Benkang
    OPTICS EXPRESS, 2016, 24 (05): : 4632 - 4639
  • [30] Intrinsic Electron Beam Emittance from Metal Photocathodes: The Effect of the Electron Effective Mass
    Rickman, B. L.
    Berger, Joel A.
    Nicholls, A. W.
    Schroeder, W. Andreas
    PHYSICAL REVIEW LETTERS, 2013, 111 (23)