An exactly solvable non C1 periodic potential

被引:0
|
作者
Boumaza, Hakim [1 ]
Lafitte, Olivier [1 ,2 ]
机构
[1] Univ Paris 13, LAGA, Sorbonne Paris Cite, 99 Ave JB Clement, F-93430 Villetaneuse, France
[2] CEA Saclay, DM2S, F-91191 Gif Sur Yvette, France
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we are concerned with the study of the spectrum of a periodic potential in 1D, modelling the interactions of an electron with a regular lattice of ions. The classical Bloch theory asserts that the spectrum has a band structure. In the case of a sawtooth potential, we have a very precise description and estimates of all bands and of all gaps under the potential barrier and near the minimum of the potential.
引用
收藏
页码:62 / 66
页数:5
相关论文
共 50 条
  • [21] A Conditionally Exactly Solvable 1D Dirac Pseudoscalar Interaction Potential
    Ghazaryan, A. M.
    Ishkhanyan, A. M.
    Red'kov, V. M.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (03) : 212 - 219
  • [22] Exactly solvable potential with four parameters for diatomic molecules
    Sun, JX
    ACTA PHYSICA SINICA, 1999, 48 (11) : 1992 - 1998
  • [23] EXACTLY SOLVABLE POTENTIAL MODEL FOR QUARKONIA - THE GLUON PROPAGATOR
    IZMESTEV, AA
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1991, 53 (05): : 867 - 871
  • [24] The scattering amplitude for a newly found exactly solvable potential
    Yadav, Rajesh Kumar
    Khare, Avinash
    Mandal, Bhabani Prasad
    ANNALS OF PHYSICS, 2013, 331 : 313 - 316
  • [25] Exactly solvable potential with four parameters for diatomic molecules
    Sun, Jiu-Xun
    Wuli Xuebao/Acta Physica Sinica, 1999, 48 (11): : 1997 - 1998
  • [26] Exactly solvable potentials from decemvirate power potential
    Saikia, Nilamoni
    TURKISH JOURNAL OF PHYSICS, 2012, 36 (02): : 187 - 196
  • [27] On the C1 non-integrability of differential systems via periodic orbits
    Llibre, Jaume
    Valls, Claudia
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 : 381 - 391
  • [28] A unified treatment of exactly solvable trigonometric potential models
    Jia, CS
    Liu, JY
    Sun, Y
    He, S
    Sun, LT
    PHYSICA SCRIPTA, 2006, 73 (02) : 164 - 168
  • [29] LOCALIZATION IN AN INCOMMENSURATE POTENTIAL - EXACTLY SOLVABLE MULTIDIMENSIONAL MODEL
    PASTUR, LA
    FIGOTIN, AL
    JETP LETTERS, 1983, 37 (12) : 686 - 688
  • [30] Exactly solvable Hamiltonian for non-Abelian quasiparticles
    Kudo, Koji
    Sharma, A.
    Sreejith, G. J.
    Jain, J. K.
    PHYSICAL REVIEW B, 2023, 107 (11)