The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers

被引:16
|
作者
LaFemina, Nikki H. [1 ]
Chen, Quan [2 ]
Colby, Ralph H. [2 ]
Mueller, Karl T. [1 ,3 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 145卷 / 11期
关键词
SINGLE-ION CONDUCTORS; POLYMER ELECTROLYTES; GEL ELECTROLYTES; TEMPERATURE-DEPENDENCE; LITHIUM/POLYMER CELLS; POLYSTYRENE IONOMERS; DENDRITIC GROWTH; DYNAMICS; TRANSPORT; MOBILITY;
D O I
10.1063/1.4962743
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Mixed conductivity and lithium diffusion in poly(ethylene oxide) molybdenum disulfide nanocomposites
    Gonzalez, G
    Santa Ana, MA
    Benavente, E
    ELECTROCHIMICA ACTA, 1998, 43 (10-11) : 1327 - 1332
  • [22] Lithium dicyanotriazolate as a lithium salt for poly(ethylene oxide) based polymer electrolytes
    Egashira, M
    Scrosati, B
    Armand, M
    Béranger, S
    Michot, C
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (04) : A71 - A73
  • [23] DIFFUSION OF POLY(ETHYLENE OXIDE) IN WATER
    KAMBE, Y
    HONDA, C
    POLYMER COMMUNICATIONS, 1984, 25 (05): : 154 - 157
  • [24] Nigh lithium ionic conductivity of poly(ethylene oxide)s having sulfonate groups on their chain ends
    Ito, K
    Nishina, N
    Ohno, H
    JOURNAL OF MATERIALS CHEMISTRY, 1997, 7 (08) : 1357 - 1362
  • [25] IONIC-CONDUCTION AND THERMAL-PROPERTIES OF POLY(ETHYLENE OXIDE) LITHIUM TETRAFLUOROBORATE FILMS
    CHIODELLI, G
    FERLONI, P
    MAGISTRIS, A
    SANESI, M
    SOLID STATE IONICS, 1988, 28 : 1009 - 1013
  • [26] Effect of Poly(ethylene glycol) Crystallization on Ionic Conduction and Dielectric Response of Imidazolium-Based Copolyester Ionomers
    Lee, Minjae
    Kwon, Yong Ku
    Kim, Jehan
    Choi, U. Hyeok
    MACROMOLECULES, 2019, 52 (06) : 2314 - 2328
  • [27] Poly(ethylene oxide)-based electrolytes for lithium-ion batteries
    Xue, Zhigang
    He, Dan
    Xie, Xiaolin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) : 19218 - 19253
  • [28] Dissolution of Lithium Metal in Poly(ethylene oxide)
    Galluzzo, Michael D.
    Halat, David M.
    Loo, Whitney S.
    Mullin, Scott A.
    Reimer, Jeffrey A.
    Balsara, Nitash P.
    ACS ENERGY LETTERS, 2019, 4 (04) : 903 - 907
  • [29] Effects of lithium perchlorate on the nucleation and crystallization of poly(ethylene oxide) and poly(ε-caprolactone) in the poly(ethylene oxide)-poly(ε-caprolactone)-lithium perchlorate ternary blend
    Huo, Hong
    Yang, Yujun
    Zhao, Xiuxiu
    CRYSTENGCOMM, 2014, 16 (07): : 1351 - 1358
  • [30] PHASE-RELATIONSHIPS AND CONDUCTIVITY OF THE POLYMER ELECTROLYTES POLY(ETHYLENE OXIDE) LITHIUM TETRAFLUOROBORATE AND POLY(ETHYLENE OXIDE) LITHIUM TRIFLUOROMETHANESULFONATE
    ZAHURAK, SM
    KAPLAN, ML
    RIETMAN, EA
    MURPHY, DW
    CAVA, RJ
    MACROMOLECULES, 1988, 21 (03) : 654 - 660